

SCHOOL OF ELECTRICAL & COMMUNICATION B.TECH. DEGREE PROGRAMME ELECTRICAL AND ELECTRONICS ENGINEERING VTUR-15 REGULATIONS 2015

VISION & MISSION OF THE UNIVERSITY

Vision:

To create, translate and disseminate frontiers of knowledge embedded with creativity and innovation for a positive transformation of emerging society.

Mission:

To nurture excellence in teaching, learning, creativity and research; translate knowledge into practice; foster multidisciplinary research across science, medicine, engineering, technology and humanities; incubate entrepreneurship; instill integrity and honor; inculcate scholarly leadership towards global competence and growth beyond self in a serene, inclusive and free academic environment.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

VISION AND MISSION OF THE DEPARTMENT

Vision:

To provide intellectual curiosity in the field of Electrical and Electronics Engineering that produces skilled interdisciplinary engineers to serve the society.

Mission:

M1	To inculcate knowledge among the students through comprehensive curriculum.
M2	To enrich the academic experience in terms of flexibility, teamwork, design skills, practice and industrial trainings.
M3	To produce competent graduates suitable for a successful career in Industry and Research

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

	On successful completion of graduation, graduates will be able to
PEO1	Design and analyse electrical and electronic systems by applying the knowledge of mathematics and engineering
PEO2	Provide practical solution to multidisciplinary societal problems through innovative ideas
PEO3	Secure positions and continue as valued, creative and proficient employees in a wide variety of fields and industries for a rewarding career

PROGRAMME OUTCOMES (POs):

The Electrical and Electronics Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOME (PSOs):

PSO1. Apply fundamental of mathematics, physical sciences and electrical & electronics engineering to analyze and solve complex real world problems.

PSO2. Design, develop and implement electrical, electronics and allied engineering systems to meet the demands of industry and suggest solutions for social needs.

Course Category	Minimum Credits Required
Foundation courses	60
Programme core	60
Programme elective	18
Allied elective	6
University elective	10
Value education elective	4
Independent learning	20
Industry/Higher Institute Learning Interaction	2
Total	180

Minimum credits required in course categories

VTUR15 EEE Curriculum

Programme Core (PC) Courses

SI.No	Course Code	Lecture Courses	L	т	Р	С
1	1151EE101	Circuits Analysis	3	0	0	3
2	1151EE102	Electronic Devices & Circuits	3	0	0	3
3	1151EE103	DC Machines & Transformers	3	0	0	3
4	1151EE104	AC Machines	3	0	0	3
5	1151EE105	Digital Electronics	3	0	0	3
6	1151EE106	Control Systems	2	2	0	3
7	1151EE107	Measurements and Instrumentation	2	0	0	2
8	1151EE108	Transmission & Distribution	3	0	0	3
9	1151EE109	Power Electronics	2	2	0	3
10	1151EE110	Power System Analysis	3	0	0	3
11	1151EE111	Power System Operation & Control	3	0	0	3
12	1151EE112	Electrical Machine Design	3	0	0	3
13	1151EE113	Microprocessor & Microcontroller	3	2	0	4
14	1151EE114	Discrete Time Signal Processing	3	0	0	3
15	1151EE115	Linear Integrated Circuits	3	0	0	3
16	1151EE116	Numerical Methods		0	0	3
		Integrated Courses				
17	1151EE201	Electromagnetic Fields	2	0	2	3
		Laboratory Courses				

SI.No	Course Code	Lecture Courses	L	Т	Р	С
18	1151EE301	Circuit Analysis Lab	0	0	2	1
19	1151EE302	Electronic Devices & Circuits Lab	0	0	2	1
20	1151EE303	DC Machines & Transformers Lab	0	0	2	1
21	1151EE304	AC Machines Lab	0	0	2	1
22	1151EE305	Control & Instrumentation Lab	0	0	2	1
23	1151EE306	Microprocessor & Microcontroller Lab	0	0	2	1
24	1151EE307	Discrete Time Signal Processing Lab	0	0	2	1
25	1151EE308	Power Electronics & Drives Lab	0	0	2	1
26	1151EE309	Power System Simulation Lab	0	0	2	1
		Total				60

VTUR15 EEE Curriculum

Programme Elective (PE) Courses

Sl.No.	Course Code	Lecture Courses	L	Т	Р	С
		Power Systems				
1	1152EE101	Power Quality Engineering	3	0	0	3
2	1152EE102	Protection and Switchgear	3	0	0	3
3	1152EE104	High Voltage Engineering	3	0	0	3
4	1152EE105	Advances in Power System	3	0	0	3
5	1152EE106	Smart Grid	3	0	0	3
6	1152EE107	Power Plant Engineering	3	0	0	3
7	1152EE108	High Voltage Direct Current Transmission	3	0	0	3
8	1152EE109	Load Forecasting and Generation Forecasting	3	0	0	3
9	1152EE110	Load Dispatching	3	0	0	3
10	1152EE144	Reactive Power Management	3	0	0	3
Power Electronics & Drives						
11	1152EE111	LED Lighting Technology	3	0	0	3
12	1152EE112	Flexible AC Transmission Systems	3	0	0	3
13	1152EE113	Modern Power Converters	3	0	0	3
14	1152EE114	Automotive Electrical & Electronics Systems	3	0	0	3
15	1152EE115	Fundamentals of Electric and Hybrid Vehicles	3	0	0	3
16	1152EE116	Special Electrical Machines	3	0	0	3
17	1152EE117	Electromagnetic Interference & Compatibility	3	0	0	3
18	1152EE118	Solid State Drives	3	0	0	3
		Embedded Systems				
19	1152EE119	Principles of Robotics	3	0	0	3
20	1152EE120	Embedded Systems	3	0	0	3

SI.No.	Course Code	Lecture Courses	L	Т	Р	С
21	1152EE121	Embedded control of Electric Drives	3	0	0	3
22	1152EE122	VLSI System & Design	3	0	0	3
23	1152EE142	Wearable Electronics	3	0	0	3
		Instrumentation & Control				
24	1152EE123	Virtual Instrumentation	3	0	0	3
25	1152EE124	Digital Control Systems	3	0	0	3
26	1152EE125	Introduction to Nonlinear Dynamical Systems	3	0	0	3
27	1152EE126	Network Analysis & Synthesis	3	0	0	3
28	1152EE127	Signals and Systems	3	0	0	3
29	1152EE128	Soft Computing	3	0	0	3
30	1152EE129	Bio Medical Instrumentation	3	0	0	3
31	1152EE130	Process Automation	3	0	0	3
Energy						
32	1152EE132	Utilization of Electrical Energy	3	0	0	3
33	1152EE133	Energy Auditing and Management	3	0	0	3
34	1152EE134	Electrical Safety & Quality Management	3	0	0	3
35	1152EE135	Renewable Energy Sources	3	0	0	3
36	1152EE136	Solar Electric Systems	3	0	0	3
37	1152EE137	Wind Energy Conversion Systems	3	0	0	3
38	1152EE138	Generation Planning	3	0	0	3
39	1152EE143	Solar Photovoltaic Systems	2	0	2	3
		Integrated Course				
40	1152EE201	Applied Soft Computing	2	0	2	3
41	1152EE202	Switch Mode Power Supply Design and Development	4	0	4	6
		Laboratory Course				
42	1152EE301	Voltage Stabilizer Fabrication	0	0	2	1

PROGRAMME CORE COURSES

THEORY COURSES

COURSE
CODE:1151EE101

COURSE TITLE: CIRCUIT ANALYSIS

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Program Core

PREAMBLE: This course aims to develop the necessary fundamentals for Electrical and Electronics engineers to analyze and solve a simple circuit involving DC and AC by making use of network laws and theorems. This course also provides a basic and comprehensive knowledge of circuits involving three phase, resonance, coupled and transients which an electrical engineer will come across in many applications and provide their solution.

PREREQUISITE COURSES: Basic Electrical Engineering

RELATED COURSES: Linear Integrated Circuits

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand the significance of the basic terminologies in electrical circuits and relation between the electrical quantities of R, L and C.
- Be proficient in handling basic laws and theorems in solving circuits.
- Be familiar with network topology and two port networks.
- Understand coupled and three phase circuits.
- Analyse the effect of transients and resonance.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain the basic laws and theorems for a given circuit involving DC and AC	K2
CO2	Apply network theorems for DC and AC circuits	K3
CO3	Build the network graph and network parameters for a given circuit	КЗ
CO4	Solve coupled and three phase circuits	K3
CO5	Identify circuits involving transients and resonance	K3

CORRELATION OF COS WITH POS AND PSOs

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	Н	М	L						L	L	Н	L
CO2	Н	Н	Н	М	L						L	L	Н	L
CO3	Н	Н	Н	М	L						L	L	Н	L
CO4	Н	Н	Н	М	L						L	L	Н	L
CO5	Н	Н	Н	М	L						L	L	Н	L

UNIT I BASIC CIRCUIT ANALYSIS Review of circuit elements – types of electric circuits, types of voltage and current source, Kirchhot aws, Mesh current and Node voltage analysis for DC and AC circuits, super mesh and super node	9
	J
	ff's
JNIT II NETWORK THEOREMS	9
Superposition theorem - Thevenin's theorem - Norton's theorem - Maximum power trans heorem - Reciprocity theorem.	fer
UNIT III NETWORK TOPOLOGY AND TWO PORT NETWORKS	9
Network topology, Incidence matrix, Tie-set matrix, Cut-set matrix, Dual networks - Two protection of the protection of	ort
UNIT IV COUPLED AND THREE PHASE CIRCUITS	9
Self and Mutual inductance - Coefficient of coupling-Analysis of coupled circuits - Analysis single tuned circuits, Solution of circuits with balanced and unbalanced loads - Pow measurement by two wattmeter method.	
UNIT V CIRCUIT TRANSIENTS AND RESONANCE	9
Transient response of RL, RC and RLC circuit using Laplace transform, Series and paral resonance, quality factor for series and parallel resonance circuit, bandwidth and resona illers.	
TOTAL: 45 PERIOD)S
TEXT BOOKS:	
 William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circu Analysis", Tata McGraw Hill Publishers, 6th edition, New Delhi, 2003. 	its
 Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, Ta McGraw-Hill, New Delhi, 2001. 	ata
REFERENCE BOOKS:	
1. Paranjothi SR, "Electric Circuits Analysis," New Age International Ltd., New Delhi, 1996	д.
 Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", Ta McGraw Hill, 2007. 	ata
 Chakrabati A, "Circuits Theory (Analysis and synthesis), Dhanpath Rai & Sons, Ne Delhi, 1999. 	ЭW
 Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Seco Edition, McGraw Hill, 2003. 	nd
ONLINE RESOURCES:	
1. https://nptel.ac.in/courses/108105159	

COURSE COI 1151EE102		ES	L	Т	P	C		
TISTEETUZ	AND CIRCUITS		3	0	0	3		
COURSE CATE	GORY: Program Core							
	nis course aims to provide the basic operation, on the performance of electronic circuits by im					onio		
PREREQUISITE	COURSES:							
Basic Electrical	Engineering, Basic Electronics Engineering							
	IRSES: Linear Integrated Circuits, Power Elec oprocessors and Microcontrollers	tronics	an	d Driv	es, Di	gita		
	ATIONAL OBJECTIVES :							
The objectives c	f the course are to,							
	nd the basic structure and operation of PN Junction	on devi	ces					
 Illustrate 	the types of rectifier, filters and regulators							
	nd the construction, operation and character r, Field Effect Transistor and Multi-vibrators.	istics	of	Bipolaı	Junc	tio		
COURSE OUTO	OMES :							
Upon the su	ccessful completion of the course, students will be	able to):					
	····· · · · · · · · · · · · · · · · ·							
со		K	now	ledge	Level			
Nos.	Course Outcomes				evised			
			om	's Tax	onomy			
		Explain the structure operation and characteristics of						
	PN Junction devices							
	arize the types of rectifier filters and regulators							
Illustr	arize the types of rectifier, filters and regulators ate the operation and characteristics of Bipolar			K2				
CO3 Illustra	narize the types of rectifier, filters and regulators ate the operation and characteristics of Bipolar on Transistor	<u> </u>						

CO4	Explain the structure, operation and characteristics of Field Effect Transistor.	K2
CO5	Construct the oscillators, Mutivibrators and power amplifiers for given applications.	K3

CORRELATION OF COS WITH POS AND PSOS

COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Μ			L								Н	L
CO2	Н	М			L								Н	L
CO3	Η	Μ			L								Н	L
CO4	Η	Μ			L								Н	L
CO5	Η	Н	Н	М	L	L					L	L	Н	Н

COURS	E CONTENT:	
UNIT I	PN JUNCTION DEVICES	9
density a SCR, DI	ion diode – structure, operation and V-I characteristic-current equand diffusion current density - diffusion and transient capacitar AC,TRIAC and UJT - display devices- LED, Laser diodes, Zene characteristic.	nce - introduction to
UNIT II	RECTIFIERS, FILTERS AND REGULATORS	9
clipper a filter, ar	e rectifier, ripple factor, full wave rectifier, Harmonic components nd clamper circuit and types, Inductor filter, Capacitor filter, LC nd comparison of various filter circuits in terms of ripple factors using zener diode.	2 - filter, Pi - section
UNIT III	BIPOLAR JUNCTION TRANSISTORS	9
CE, CB,	cture, operation and V-I characteristic- BJT small signal model – CC amplifiers - Gain and frequency response. BJT biasing, DC to base bias, self bias techniques for stabilization, com ues	load line, fixed bias,
UNIT IV	FET CHARACTERISTICS	9
signal m	F – structure, operation and V-I characteristic – types of MOSF odel – biasing – analysis of CS and source follower – gain and f structure, operation and V-I characteristic. Introduction of IGB rs	frequency response-
UNIT V	OSCILLATORS, MULTIVIBRATORS, POWER AND FEED BACK AMPLIFERS	9
UJT as r	n for oscillations, phase shift – Wien Bridge, Hartley, Colpitts and elaxation oscillator. Multivibrators - Astable, Monostable and Bist d D power amplifiers. Feedback amplifiers and its types	
	Т	OTAL: 45 PERIODS
TEXT BO	DOKS:	
2. D	.K. Metha, " Principles of Electronics" Pavid A. Bell, "Electronic devices and circuits", Oxford University, edra Smith, "Microelectronic circuits "Oxford University Press, 5 th	
REFERE	INCE BOOKS:	
2. D E	loyd, "Electron devices" Pearson Asia 5 th Edition, 2011. Ionald A Neamen, "Electronic Circuit Analysis and Design" Ta Idition 2012.	ata McGraw Hill, 3 rd
	RESOURCES: ttps://nptel.ac.in/courses/108105158	
ı. <u>n</u>	ups.//nptci.dt.in/touises/100100100	

		ODE:		С	OURS			C MA		ES &		LT	Р	С
11	51EE	103				TRA	NSFO	RME	RS			3 0	0	3
COURSE CATEGORY: Program Core PREAMBLE: This course provides an introduction to the basic concepts of rotating machines,														
DC Ma their in	achine iter-rel ve lea	s (Ger ations rning	nerato and a	rs and	d mote ations	ors), ti to en	ransfo gineer	rmers ing, a	and t nd res	their tes search a	sting m areas;	of rotat nethods introduc tical an	, emph ce stud	asizing ents to
PRERI		SITE C	OURS	SES:										
Basic I	Electri	cal En	gineei	ring										
RELA			-	0										
AC Ma	chines	s, Elec	trical	Machi	ne De	sign								
COUR	SE ED			L OB	JECT	IVES	:							
The ob	jective	es of th	ne cou	irse ar	e to,									
•	Deve identi	lop the fying t	e skills he cu	s of the rrent p	e stud robler	ents ir n in th	n the a ne indu	areas o ustries	of mac and b		and trai	nsforme throug		ırch.
COUR														
					etion	of the	cours	e, stud	dents	will be a	able to:	:		
CO Nos				C	Cours	e Out	come	S			c	Level o Iomain revised taxo	(Base	d on n's
CO1		borate		e pri	nciple	of	elec	troma	gnetic	ener	gу		K2	
CO2				forma	nce cl	haract	eristic	s of D	C Ger	nerators	S.		K2	
CO3		scribe											K2	
CO4						CITC	uit o	i trar	ISIOIT	ners a	na		K2	
CO4 determine its regulation N2 CO5 Realize the testing methods to determine the performance characteristics of DC machines and Transformers. K2											се		K2	
CO5														
			FCO	s WIT				3						
CORR	ELAT							PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CORR								PO8	PO9	PO10	PO11	PO12	PSO1 M	PSO2
CORR COs CO1 CO2	ELAT PO1 H	РО2 Н Н		PO4 L M			P07	PO8	PO9	PO10	PO11 L	L M	M H	PSO2 L L
CORR COs CO1 CO2 CO3	ELAT PO1 H H	PO2 H H H		PO4 L M M			P07	PO8	PO9	PO10		L M M	M H H	
CORR COs CO1 CO2	ELAT РО1 Н Н	РО2 Н Н		PO4 L M			P07	PO8	PO9	PO10	L	L M	M H	PSO2

COURS	SE CONTENT:	
UNITI	BASIC CONCEPTS OF ROTATING MACHINES	6
fields -	es of electromechanical energy conversion – Force and Torque Energy and Force in single and multiple excited systems – C distributed windings – Rotating magnetic field – Generated volta achine.	oncept of Co-energy -
UNITII	DC GENERATORS	12
lap and equation compen excitatio	actional details – Principle of Operation – Action of Commutator wave windings – Simplex and Multiplex windings – use of Lam n – Armature Reaction (cross Magnetizing and de-mag sating winding – Commutation – methods of improving Com on – self and separately excited generators – Parallel opera and generators.	inated Armature – emf gnetizing AT/Pole) – mutation - Methods of
UNITIII	DC MOTORS	9
series, s	e of operation – Back emf and torque equation – Characteris shunt and compound motors – starting of dc motors – Types of s ount and series motors – Braking of dc shunt motor – Protecting c	starters – Speed control
UNITIV	TRANSFORMERS	9
	ictional details of core and shell type transformers- Types of	
operatio to HV/LY single a	ictional details of core and shell type transformers- Types of on - emf equation- Transformation ratio - Transformer on no-load V windings - Equivalent circuit - Transformer on load- Regulatior and three phase transformers - Auto transformer- Three phase n – Load Sharing of Transformer.	d - Parameters referred n - Parallel operation of
operatio to HV/LY single a	on - emf equation- Transformation ratio - Transformer on no-load V windings - Equivalent circuit - Transformer on load- Regulation and three phase transformers - Auto transformer- Three phase n – Load Sharing of Transformer.	d - Parameters referred n - Parallel operation of
operatio to HV/LY single a diagram UNIT V Losses a Testing Hopkins	on - emf equation- Transformation ratio - Transformer on no-load V windings - Equivalent circuit - Transformer on load- Regulation and three phase transformers - Auto transformer- Three phase n – Load Sharing of Transformer.	 d - Parameters referred h - Parallel operation of transformers – Phasor 9 maximum efficiency - Retardation Test,
operatio to HV/LY single a diagram UNIT V Losses a Testing Hopkins	on - emf equation- Transformation ratio - Transformer on no-load V windings - Equivalent circuit - Transformer on load- Regulation and three phase transformers - Auto transformer- Three phase n – Load Sharing of Transformer. TESTING OF DC MACHINES AND TRANSFORMERS and efficiency in DC machines and transformers - Condition for r of DC machines – Brake test, Swinburne's test, Sumpner's test, son's test – testing of transformers – Polarity test, load test, open	 d - Parameters referred h - Parallel operation of transformers – Phasor 9 maximum efficiency - Retardation Test,
operatio to HV/LY single a diagram UNIT V Losses a Testing Hopkins tests, Ta	on - emf equation- Transformation ratio - Transformer on no-load V windings - Equivalent circuit - Transformer on load- Regulation and three phase transformers - Auto transformer- Three phase n - Load Sharing of Transformer. TESTING OF DC MACHINES AND TRANSFORMERS and efficiency in DC machines and transformers - Condition for r of DC machines – Brake test, Swinburne's test, Sumpner's test, son's test – testing of transformers – Polarity test, load test, open an Delta tests - All day efficiency.	 d - Parameters referred h - Parallel operation of transformers – Phasor 9 maximum efficiency - Retardation Test, circuit and short circuit
operatio to HV/LY single a diagram UNIT V Losses a Testing Hopkins tests, Ta TEXTBO	on - emf equation- Transformation ratio - Transformer on no-load V windings - Equivalent circuit - Transformer on load- Regulation and three phase transformers - Auto transformer- Three phase n - Load Sharing of Transformer. TESTING OF DC MACHINES AND TRANSFORMERS and efficiency in DC machines and transformers - Condition for r of DC machines – Brake test, Swinburne's test, Sumpner's test, son's test – testing of transformers – Polarity test, load test, open an Delta tests - All day efficiency. Dr.P.S.Bimbhra , 'Electrical Machinery', Khanna Publishers, 7 th E	d - Parameters referred n - Parallel operation of transformers – Phasor 9 maximum efficiency - Retardation Test, circuit and short circuit TOTAL: 45 PERIODS dison, 2013.
operatio to HV/LY single a diagram UNIT V Losses a Testing Hopkins tests, Ta TEXTBO 1. [2. [on - emf equation- Transformation ratio - Transformer on no-load V windings - Equivalent circuit - Transformer on load- Regulation and three phase transformers - Auto transformer- Three phase n - Load Sharing of Transformer. TESTING OF DC MACHINES AND TRANSFORMERS and efficiency in DC machines and transformers - Condition for r of DC machines – Brake test, Swinburne's test, Sumpner's test, son's test – testing of transformers – Polarity test, load test, open an Delta tests - All day efficiency.	d - Parameters referred n - Parallel operation of transformers – Phasor 9 maximum efficiency - Retardation Test, circuit and short circuit TOTAL: 45 PERIODS dison, 2013.
operatio to HV/LY single a diagram UNIT V Losses a Testing Hopkins tests, Ta TEXTBO 1. [2. [L	on - emf equation- Transformation ratio - Transformer on no-load V windings - Equivalent circuit - Transformer on load- Regulation and three phase transformers - Auto transformer- Three phase n – Load Sharing of Transformer. TESTING OF DC MACHINES AND TRANSFORMERS and efficiency in DC machines and transformers - Condition for r of DC machines – Brake test, Swinburne's test, Sumpner's test, son's test – testing of transformers – Polarity test, load test, open an Delta tests - All day efficiency. DKS: Dr.P.S.Bimbhra, 'Electrical Machinery', Khanna Publishers, 7 th Ed D.P.Kothari and I.J.Nagrath, 'Electric Machines', Tata McGraw H	d - Parameters referred n - Parallel operation of transformers – Phasor 9 maximum efficiency - Retardation Test, circuit and short circuit TOTAL: 45 PERIODS dison, 2013.
operatio to HV/LY single a diagram UNIT V Losses a Testing Hopkins tests, Ta TEXTBO 1. [2. [L REFER]	on - emf equation- Transformation ratio - Transformer on no-load V windings - Equivalent circuit - Transformer on load- Regulation and three phase transformers - Auto transformer- Three phase n - Load Sharing of Transformer. TESTING OF DC MACHINES AND TRANSFORMERS and efficiency in DC machines and transformers - Condition for r of DC machines – Brake test, Swinburne's test, Sumpner's test, son's test – testing of transformers – Polarity test, load test, open an Delta tests - All day efficiency. DOKS: Dr.P.S.Bimbhra, 'Electrical Machinery', Khanna Publishers, 7 th Ed D.P.Kothari and I.J.Nagrath, 'Electric Machines', Tata McGraw H Ltd, 2002. ENCE BOOKS: A.E.Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric McGraw Hill Publishing company Ltd, 2003.	d - Parameters referred h - Parallel operation of transformers – Phasor 9 maximum efficiency - Retardation Test, circuit and short circuit TOTAL: 45 PERIODS dison, 2013. ill Publishing company Machinery', and Tata
operatio to HV/LY single a diagram UNIT V Losses a Testing Hopkins tests, Ta TEXTBO 1. [2. [L REFER] 1. / N 2. (on - emf equation- Transformation ratio - Transformer on no-load V windings - Equivalent circuit - Transformer on load- Regulation and three phase transformers - Auto transformer- Three phase n - Load Sharing of Transformer. TESTING OF DC MACHINES AND TRANSFORMERS and efficiency in DC machines and transformers - Condition for r of DC machines – Brake test, Swinburne's test, Sumpner's test, son's test – testing of transformers – Polarity test, load test, open an Delta tests - All day efficiency. Dr. P.S.Bimbhra, 'Electrical Machinery', Khanna Publishers, 7 th Ed D.P.Kothari and I.J.Nagrath, 'Electric Machines', Tata McGraw H Ltd, 2002. ENCE BOOKS: A.E.Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric	d - Parameters referred n - Parallel operation of transformers – Phasor 9 maximum efficiency - Retardation Test, circuit and short circuit TOTAL: 45 PERIODS dison, 2013. ill Publishing company Machinery', and Tata
operatio to HV/LY single a diagram UNIT V Losses a Testing Hopkins tests, Ta TEXTBO 1. [2. [4 8EFER] 1. / 2. 2	on - emf equation- Transformation ratio - Transformer on no-load V windings - Equivalent circuit - Transformer on load- Regulation and three phase transformers - Auto transformer- Three phase n - Load Sharing of Transformer. TESTING OF DC MACHINES AND TRANSFORMERS and efficiency in DC machines and transformers - Condition for r of DC machines – Brake test, Swinburne's test, Sumpner's test, son's test – testing of transformers – Polarity test, load test, open an Delta tests - All day efficiency. DOKS: Dr.P.S.Bimbhra, 'Electrical Machinery', Khanna Publishers, 7 th Ed D.P.Kothari and I.J.Nagrath, 'Electric Machines', Tata McGraw H Ltd, 2002. ENCE BOOKS: A.E.Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric McGraw Hill Publishing company Ltd, 2003. J.B.Gupta, 'Theory and performance of Electrical Machines',	d - Parameters referred n - Parallel operation of transformers – Phasor 9 maximum efficiency - Retardation Test, circuit and short circuit TOTAL: 45 PERIODS dison, 2013. ill Publishing company Machinery', and Tata

COURSE CODE: 1151EE104	COURSE TITLE: AC MACHINES	L	Т	Ρ	С
	COURSE IIILE. AC MACHINES	3	0	0	3

COURSE CATEGORY: Program Core

PREAMBLE: This course provides knowledge on various types of AC Generator, AC Motor and recent Special Machines, which mould the students in relation to the performance characteristics, operating principle, control techniques and their applications.

PREREQUISITE COURSES: DC Machines & Transformers

RELATED COURSES: Solid State Drives

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Analyse the performance characteristics of Synchronous machines
- Explain the performance characteristics of Induction machines.
- Summarize the concept of Single Phase Induction Motors and Special Machines.

COURSE OUTCOMES :

CO No.		Course Outcomes									Level of learning domain (Based on revised Bloom's taxonomy)			
CO1		Explain the operating principle, methods of determir egulation of three phase alternator								etermin	ing	K2		
CO2	An	alyse t	he ch	aracte	ristics	of syr	nchror	ious m	otors				K4	
CO3	Ex Mo		ne per	forma	nce cł	naract	eristic	s of 3	phase	Induct	ion		K2	
CO4	An	alyze t	he co	ntrol s	trateg	ies of	3 pha	se Ind	uction	Motor			K4	
CO5		strate tors ar					of Si	ngle I	Phase	Induct	ion		K2	
CORR	ELAT		F CO:	s WIT	H POs	s AND	PSO	5						
COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н		L		L						L	Н	L
CO2	Н	Н		Μ									Н	L
CO3	Н	Н	Μ	Μ			L						Н	L
CO4	Н	Н		Μ									Н	L
CO5	Н	М		М		М						L	Н	L
COUR	SE CO	ONTEN	IT:											
UNIT I		SYI	NCHR	ONO	US GE	ENER	ATOR							9
reactio paralle	n – ∖ I oper	'oltage ation -	e regu - Syn	lation chroni	– E.r zing t	m.f, m orque	nmf, z - Cha	.p.f ar	nd A.S	S.A me tation a	thods Ind me	 Sync chanica 	hronizii al input	rmature ng and – Two sing slip

	•	ting characteristics - Capability curves.	
UNIT I		SYNCHRONOUS MOTOR	9
input a	and po	operation – Torque equation – Operation on infinite bus bars ower developed equations – Starting methods – Current loci ant excitation and constant power developed.	
UNIT I		THREE PHASE INDUCTION MOTOR	9
Equiva efficier	alent c ncy – l	gnetic field-Constructional details – Types of rotors – Principle sircuit – Slip-torque characteristics - Condition for maximum to Load test - No load and blocked rotor tests - Circle diagram – S uble cage rotors – Induction generator – Synchronous induction	orque – Losses and Separation of no load
UNIT I	IV	STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR	9
autotra	ansforr	arting – Types of starters – Stator resistance and reactance mer and star-delta starters – Speed control – Change of voltag p – Cascaded connection – Slip power recovery scheme	
UNIT			
Consti	ruction	SINGLE PHASE INDUCTION MOTORS	ing field theory and
Consti operat Startin	ruction tion – ng met	al details of single phase induction motor – Double revolvi Equivalent circuit – No load and blocked rotor test – Perf hods of single-phase induction motors - Shaded pole induction sion motor, hysteresis motor, stepper motor and AC series moto	ing field theory and ormance analysis – on motor, reluctance or.
Constr operat Startin motor,	ruction tion – ng met , repuls	al details of single phase induction motor – Double revolvi Equivalent circuit – No load and blocked rotor test – Perf hods of single-phase induction motors - Shaded pole induction sion motor, hysteresis motor, stepper motor and AC series motor	ing field theory and ormance analysis – on motor, reluctance or.
Constr operat Startin motor,	ruction tion – ng met , repuls COCKS	al details of single phase induction motor – Double revolvi Equivalent circuit – No load and blocked rotor test – Perf hods of single-phase induction motors - Shaded pole induction sion motor, hysteresis motor, stepper motor and AC series motor	ing field theory and ormance analysis – on motor, reluctance or. OTAL: 45 PERIODS
Constr operat Startin motor, TEXTB 1.	ruction tion – ng met , repuls SOOKS D.P. Comp B. L.	al details of single phase induction motor – Double revolvi Equivalent circuit – No load and blocked rotor test – Perfected sion motor, hysteresis motor, stepper motor and AC series motor T S: Kothari and I.J. Nagrath, 'Electric Machines', Tata McG	ing field theory and ormance analysis – on motor, reluctance or. OTAL: 45 PERIODS raw Hill Publishing
Constr operat Startin motor, TEXTB 1. 2.	ruction ig met repuls COOKS D.P. Comp B. L. Public	Al details of single phase induction motor – Double revolvi Equivalent circuit – No load and blocked rotor test – Perfi- shods of single-phase induction motors - Shaded pole induction sion motor, hysteresis motor, stepper motor and AC series motor T S: Kothari and I.J. Nagrath, 'Electric Machines', Tata McG pany Ltd, 2010. Theraja and A.K. Theraja, "A Text Book of Electrical Tec	ing field theory and ormance analysis – on motor, reluctance or. OTAL: 45 PERIODS raw Hill Publishing
Constr operat Startin motor, TEXTB 1. 2. REFE	ruction ig met repuls OOKS D.P. Comp B. L. Public RENC A.E.	Al details of single phase induction motor – Double revolvi Equivalent circuit – No load and blocked rotor test – Perfi- shods of single-phase induction motors - Shaded pole induction sion motor, hysteresis motor, stepper motor and AC series motor T C S: Kothari and I.J. Nagrath, 'Electric Machines', Tata McG pany Ltd, 2010. Theraja and A.K. Theraja, "A Text Book of Electrical Tec cation, 2002.	ing field theory and ormance analysis – on motor, reluctance or. OTAL: 45 PERIODS raw Hill Publishing hnology", S. Chand
Constr operat Startin motor, TEXTB 1. 2. REFE	ruction ng met , repuls BOOKS D.P. Comp B. L. Public RENC A.E. Hill p	All details of single phase induction motor – Double revolvi Equivalent circuit – No load and blocked rotor test – Perfected sion motor, hysteresis motor, stepper motor and AC series motor Te S: Kothari and I.J. Nagrath, 'Electric Machines', Tata McG pany Ltd, 2010. Theraja and A.K. Theraja, "A Text Book of Electrical Tec cation, 2002. E BOOKS: Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Mac ublishing Company Ltd, 2002. Gupta, 'Theory and Performance of Electrical Machines', S.H	ing field theory and ormance analysis – on motor, reluctance or. OTAL: 45 PERIODS raw Hill Publishing hnology", S. Chanc chinery',TataMcGraw
Constr operat Startin motor, TEXTB 1. 2. REFE 1. 2. 3.	ruction ng met repuls COOKS D.P. Comp B. L. Public RENC A.E. Hill p J.B. 2009 K. Mu	Al details of single phase induction motor – Double revolvi Equivalent circuit – No load and blocked rotor test – Perfi- hods of single-phase induction motors - Shaded pole induction sion motor, hysteresis motor, stepper motor and AC series motor T (S : Kothari and I.J. Nagrath, 'Electric Machines', Tata McG pany Ltd, 2010. Theraja and A.K. Theraja, "A Text Book of Electrical Tec cation, 2002. E BOOKS: Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Mac ublishing Company Ltd, 2002. Gupta, 'Theory and Performance of Electrical Machines', S.F. urugesh Kumar, 'Electric Machines', Vikas publishing house Pvt	ing field theory and ormance analysis – on motor, reluctance or. OTAL: 45 PERIODS raw Hill Publishing chnology", S. Chanc chinery',TataMcGraw K.Kataria and Sons t Ltd, 2004.
Constr operat Startin motor, TEXTB 1. 2. REFE 1. 2. 3.	ruction ng met repuls COOKS D.P. Comp B. L. Public RENC A.E. Hill p J.B. 2009 K. Mu	All details of single phase induction motor – Double revolvi Equivalent circuit – No load and blocked rotor test – Perfi- hods of single-phase induction motors - Shaded pole induction sion motor, hysteresis motor, stepper motor and AC series motor T (S : Kothari and I.J. Nagrath, 'Electric Machines', Tata McG pany Ltd, 2010. Theraja and A.K. Theraja, "A Text Book of Electrical Tec cation, 2002. E BOOKS: Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Mac ublishing Company Ltd, 2002. Gupta, 'Theory and Performance of Electrical Machines', S.F. urugesh Kumar, 'Electric Machines', Vikas publishing house Pvt 1.C.Haran, 'Synchronous, Induction and Special Machines', S.	ing field theory and ormance analysis - on motor, reluctance or. OTAL: 45 PERIODS raw Hill Publishing chinology", S. Chanc chinery',TataMcGraw K.Kataria and Sons t Ltd, 2004.
Constr operat Startin motor, TEXTB 1. 2. REFE 1. 2. 3. 4.	ruction ig met repuls COOKS D.P. Comp B. L. Public RENC A.E. Hill p J.B. 2009 K. Mu Sheil 2001	All details of single phase induction motor – Double revolvi Equivalent circuit – No load and blocked rotor test – Perfi- hods of single-phase induction motors - Shaded pole induction sion motor, hysteresis motor, stepper motor and AC series motor T (S : Kothari and I.J. Nagrath, 'Electric Machines', Tata McG pany Ltd, 2010. Theraja and A.K. Theraja, "A Text Book of Electrical Tec cation, 2002. E BOOKS: Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Mac ublishing Company Ltd, 2002. Gupta, 'Theory and Performance of Electrical Machines', S.F. urugesh Kumar, 'Electric Machines', Vikas publishing house Pvt 1.C.Haran, 'Synchronous, Induction and Special Machines', S.	ing field theory and ormance analysis – on motor, reluctance or. OTAL: 45 PERIODS raw Hill Publishing chinology", S. Chand chinery',TataMcGraw K.Kataria and Sons, t Ltd, 2004.
Constr operat Startin motor, FEXTB 1. 2. REFE 1. 2. 3. 4. 5.	ruction ig met repuls BOOKS D.P. Comp B. L. Public RENC A.E. Hill p J.B. 2009 K. Mu Sheil 2001 P.S.	All details of single phase induction motor – Double revolvi Equivalent circuit – No load and blocked rotor test – Performanda of single-phase induction motors - Shaded pole induction sion motor, hysteresis motor, stepper motor and AC series motor Trees: Kothari and I.J. Nagrath, 'Electric Machines', Tata McG pany Ltd, 2010. Theraja and A.K. Theraja, "A Text Book of Electrical Tec cation, 2002. E BOOKS: Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Mac ublishing Company Ltd, 2002. Gupta, 'Theory and Performance of Electrical Machines', S.F. urugesh Kumar, 'Electric Machines', Vikas publishing house Pvt 1.C.Haran, 'Synchronous, Induction and Special Machines', S.	ormance analysis – on motor, reluctance or. OTAL: 45 PERIODS raw Hill Publishing chinology", S. Chand chinery',TataMcGraw K.Kataria and Sons, t Ltd, 2004.

COURSE CODE:
1151EE105

COURSE TITLE: DIGITAL ELECTRONICS

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Program Core

PREAMBLE: The primary aim of this course is to understand the fundamental behind digital logic circuit design and gain experience in using them for meeting any design specification. This course includes fundamentals of Boolean algebra, combinational circuits, sequential circuits, introduction to VHDL and applications of digital electronics.

PREREQUISITE COURSES: Basic Electrical Engineering, Electronic Devices and Circuits

RELATED COURSES: Microprocessor and Microcontroller, VLSI System & Design

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Familiar with number systems, number conversions and simplification using Boolean algebra.
- Understand combinational and sequential digital logic circuits.
- Write the code for digital logic circuits using Verilog HDL.
- Study the applications of digital electronics.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Apply the fundamentals of digital electronics for designing combinational circuits.	K3
CO2	Develop synchronous sequential circuits for given applications.	K3
CO3	Implement the Structural, Dataflow and Behavioral modeling for combinational and sequential circuits using hardware description language.	КЗ
CO4	Develop asynchronous sequential circuits for given applications.	КЗ
CO5	Explain the applications of digital electronics.	K2

CORRELATION OF COS WITH POS AND PSOs

COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	М	М	М							Μ	Н	М
CO2	Н	Н	Н	Н	М						L	Μ	Н	М
CO3	Н	Н	Н	Н	М						Γ	Μ	Н	М
CO4	Н	Н	Н	Н	М						Γ	Μ	Н	М
CO5	М	L				L						L	L	L

	CONTENT:	
UNIT I	DIGITAL FUNDAMENTALS AND COMBINATIONAL CIRCUITS	9
and Tabu Half subtr Carry Loo Divider -	on to Boolean algebra and Switching Functions; Boolean Mini Ilation method; combinational circuits: Design procedure – Hal actor – Full subtractor – Parallel binary adder, parallel binary Su ok Ahead adder – Serial Adder/Subtractor - BCD adder – Bin Multiplexer/ Demultiplexer – decoder - encoder – parity checke verters - Magnitude Comparator.	f adder – Full Adder – Ibtractor – Fast Adder - Iary Multiplier – Binary
UNIT II	SEQUENTIAL CIRCUITS	9
Counters	and Memory devices: RAM – Static and Dynamic, ROM, PROM and Shift registers - Binary, BCD and programmable modulo co - Sequential circuit design: using Mealy and Moore model.	
UNIT III	INTRODUCTION TO HARDWARE DESCRIPTION LANGUAGE	9
Dataflow decoder a	on to Verilog / VHDL - Structural, Dataflow and Behavioral and Behavioral modeling of combinational logic circuits (Mult and encoder) - Structural, Dataflow and Behavioral modeling of s and shift registers).	iplexer, Demultiplexer,
UNIT IV	ASYNCHRONOUS SEQUENTIAL CIRCUITS	9
	Procedure, Circuits with latches - Design Procedure - Reduction estate assignment – Hazards - ASM chart - Design examples.	of state and flow table
UNIT V	APPLICATIONS OF DIGITAL ELECTRONICS	9
Multiplexi	APPLICATIONS OF DIGITAL ELECTRONICS ng displays - Frequency counters - Time measurements - using eration, span adjust, zero shift, testing - microprocessor compatib	the ADC0804 - Slope
Multiplexi	ng displays - Frequency counters - Time measurements - using	the ADC0804 - Slope
Multiplexi alone ope	ng displays - Frequency counters - Time measurements - using eration, span adjust, zero shift, testing - microprocessor compatil	the ADC0804 - Slope ble A/D converters.
Multiplexi alone ope TEXT BOO 1. M Pe	ng displays - Frequency counters - Time measurements - using eration, span adjust, zero shift, testing - microprocessor compatile DKS: . Morris Mano, Digital Design, 3rd Edition, Prentice Hall of I earson Education (Singapore) Pvt. Ltd., New Delhi, 2003.	the ADC0804 - Slope ole A/D converters. TOTAL: 45 PERIODS
Multiplexi alone ope TEXT BOO 1. M Pe 2. Do	ng displays - Frequency counters - Time measurements - using eration, span adjust, zero shift, testing - microprocessor compatile DKS: . Morris Mano, Digital Design, 3rd Edition, Prentice Hall of I earson Education (Singapore) Pvt. Ltd., New Delhi, 2003. onald .P.Leach, Digital principles and applications,7th Edition,Mo	the ADC0804 - Slope ole A/D converters. TOTAL: 45 PERIODS
Multiplexi alone ope TEXT BOO 1. M Pe 2. Do REFERE 1. Jo 2. Th Na 3. W	ng displays - Frequency counters - Time measurements - using eration, span adjust, zero shift, testing - microprocessor compatile DKS: . Morris Mano, Digital Design, 3rd Edition, Prentice Hall of I earson Education (Singapore) Pvt. Ltd., New Delhi, 2003.	the ADC0804 - Slope ole A/D converters. TOTAL: 45 PERIODS India Pvt. Ltd., 2003 / cGraw-Hill ,2012 6. cation Inc,

COURSE TITLE: CONTROL SYSTEMS

Т	Р	С
2	0	3

L

2

COURSE CATEGORY: Program Core

PREAMBLE :

This course aims to provide knowledge in mathematical modelling with state space and transfer function models, time and frequency response analysis and stability studies of the system.

PREREQUISITE COURSES: Circuit Analysis

RELATED COURSES: Digital Control Systems

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Acquire knowledge in mathematical modelling of various systems.
- Perform time and frequency domain analysis and the check the stability.
- Apply controllers and compensators design for the system based on given specifications.
- Develop state space model from transfer function.

COURSE OUTCOMES :

CO Nos.				С	ourse	Outc	omes	i			Knowledge Level (Based on revised Bloom's Taxonomy)							
CO1	an fur	d Ele	ctro n	necha	nical	syster	ns ar	nd Ob	tain t	hanical ransfer i's gain		ł	(2					
CO2			e var their s			dom	ain s	specifi	cation	s and		ł	٢2					
CO3		•	the F y resp				•		system	n using		ł	(3					
CO4			ne the uency					syster	n usir	ng time		ł	(3					
CO5	sp	•			•					given nd PID		٢	(3					
CO6		velop e vers		space	mode	els fro	m trai	nsfer f	unctio	ns and		K3						
CORRI	ELAT	ON O	F COs	s WITI	H POs	AND	PSOs	6										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2				
CO1	Н	Н	М		L						L	М	Н	М				
CO2	Н	Н	L		Μ							М	Н	М				
CO3	H	Н	Н	М	М						Μ	M	H	М				
CO4	<u>H</u>	H	M									M	H	M				
CO5	<u>H</u>	H	M	М	Μ						M	M	H	M				
CO6	Н	Н	М								L	М	Н	М				

COUR	RSE CON			
	I	INTRODUCTION		g
of vari	ious syste	control systems – Open loop and closed loop systems – Matherne ms – analogies between Electrical and Mechanical Systems - n using Block Diagram Reduction – Signal flow graph Method		
	II	TIME RESPONSE ANALYSIS		ç
Secon	nd order s	Effect of feedback – Standard Test Signals – Time Response ystems – Time response specifications – Effects of addition of rors and error constants - P PI and PID Controllers an Introduc	⁻ Poles and	
	111	FREQUENCY RESPONSE ANALYSIS		g
– Pola	ar plot – E	frequency response-Time and frequency response correlation Bode plot – Frequency response specification -Gain margin a Ind Lead compensators using frequency response specificatior	and phase	
	IV	STABILITY ANALYSIS		ç
			Poot locus	method
Stabili	ity concep	ts – Conditions for stability – Routh Hurwitz stability criteria - F		
		ts – Conditions for stability – Routh Hurwitz stability criteria - F quency domain – Nyquist stability criterion – Relative stability a		
– Stab UNIT	oility in free V	quency domain – Nyquist stability criterion – Relative stability a	analysis	ç
– Stab UNIT Introdu functic	v v uction to s	quency domain – Nyquist stability criterion – Relative stability a INTRODUCTION TO STATE SPACE MODEL State space – State Equations – Conversion of State space more e versa - Solution of State Equations - State Transition Matrix	analysis	ç İsfer
– Stab UNIT Introdu functic	v v uction to son and vic	quency domain – Nyquist stability criterion – Relative stability a INTRODUCTION TO STATE SPACE MODEL State space – State Equations – Conversion of State space mo e versa - Solution of State Equations - State Transition Matrix - ty.	analysis	sfer ability
– Stab UNIT Introdu functic and O	v v uction to son and vic	quency domain – Nyquist stability criterion – Relative stability a INTRODUCTION TO STATE SPACE MODEL State space – State Equations – Conversion of State space mo e versa - Solution of State Equations - State Transition Matrix - ty.	analysis odel to tran – Controlla	sfer ability
– Stab UNIT Introdu functic and O FEXT E	v uction to S on and vic bbservabili BOOKS: Norman RicharD	quency domain – Nyquist stability criterion – Relative stability a INTRODUCTION TO STATE SPACE MODEL State space – State Equations – Conversion of State space mode versa - Solution of State Equations - State Transition Matrix - ty. TOT S.Nise "Control Systems Engineering" , Wiley Student Edition, C.Dorf and Robert.H.Bishop "Modern Control Sytems", Pearso	analysis odel to tran – Controlla TAL: 45 PE	sfer ability ERIODS n 2012
– Stab UNIT Introdu functic and O EXT E 1. 2.	v uction to S on and vic bservabili BOOKS: Norman RicharD edition 2	quency domain – Nyquist stability criterion – Relative stability a INTRODUCTION TO STATE SPACE MODEL State space – State Equations – Conversion of State space mode versa - Solution of State Equations - State Transition Matrix - ty. TOT S.Nise "Control Systems Engineering", Wiley Student Edition, C.Dorf and Robert.H.Bishop "Modern Control Sytems", Pearso 2011. ath and M.Gopal "Control Systems Engineering", New Age	analysis odel to tran – Controlla TAL: 45 PE	sfer ability ERIODS n 2012
– Stab UNIT Introdu functic and O EXT E 1. 2. 3.	v uction to S on and vic bservabili BOOKS: Norman RicharD edition 2 IJ Nagra	quency domain – Nyquist stability criterion – Relative stability a INTRODUCTION TO STATE SPACE MODEL State space – State Equations – Conversion of State space mode versa - Solution of State Equations - State Transition Matrix - ty. TOT S.Nise "Control Systems Engineering" , Wiley Student Edition, C.Dorf and Robert.H.Bishop "Modern Control Sytems", Pearso 2011. ath and M.Gopal "Control Systems Engineering", New Age 2010.	analysis odel to tran – Controlla TAL: 45 PE	sfer ability ERIODS n 2012
– Stab UNIT Introdu functic and O EEXT E 1. 2. 3. REFE	v uction to S on and vic bservabili BOOKS: Norman RicharD edition 2 IJ Nagra edition 2	quency domain – Nyquist stability criterion – Relative stability a INTRODUCTION TO STATE SPACE MODEL State space – State Equations – Conversion of State space mode versa - Solution of State Equations - State Transition Matrix - ty. TOT S.Nise "Control Systems Engineering" , Wiley Student Edition, C.Dorf and Robert.H.Bishop "Modern Control Sytems", Pearso 2011. ath and M.Gopal "Control Systems Engineering", New Age 2010.	analysis odel to tran – Controlla TAL: 45 PE	sfer ability ERIODS n 2012
– Stab UNIT Introdu functic and O TEXT E 1. 2. 3. REFE 1.	v uction to S on and vic bservabili BOOKS: Norman RicharD edition 2 IJ Nagra edition 2 RENCE E Kaitshika	quency domain – Nyquist stability criterion – Relative stability a INTRODUCTION TO STATE SPACE MODEL State space – State Equations – Conversion of State space mode versa - Solution of State Equations - State Transition Matrix - ty. TOT S.Nise "Control Systems Engineering", Wiley Student Edition, C.Dorf and Robert.H.Bishop "Modern Control Sytems", Pearso 2011. ath and M.Gopal "Control Systems Engineering", New Age 2010. BOOKS:	analysis odel to tran – Controlla TAL: 45 PE , 5th editio on Educati e Internatic 10 edition.	sfer ability ERIODS n 2012 ion,11th onal, 6th
- Stab UNIT Introdu functic and O TEXT E 1. 2. 3. REFE 1. 2.	v uction to S on and vic observabili BOOKS: Norman RicharD edition 2 IJ Nagra edition 2 SRENCE E Kaitshike John J	quency domain – Nyquist stability criterion – Relative stability a INTRODUCTION TO STATE SPACE MODEL State space – State Equations – Conversion of State space mode versa - Solution of State Equations - State Transition Matrix - ty. TOT S.Nise "Control Systems Engineering", Wiley Student Edition, C.Dorf and Robert.H.Bishop "Modern Control Systems", Pearson 2011. ath and M.Gopal "Control Systems Engineering", New Age 2010. BOOKS: O Ogata "Modern Control Engineering"Pearson Education" 201 Azzo and Constantine H.Houpis "Linear Control Systems and TLAB", Marcel Dekker Inc, 6th Edition 2013. C. Goodwin, Stefen F. Grebe and Mario E.Salgado "Control	analysis odel to tran – Controlla TAL: 45 PE , 5th editio on Educati e Internatic 10 edition. nalysis and	sfer ability ERIODS n 2012 ion,11th onal, 6th
- Stab UNIT Introdu functic and O TEXT E 1. 2. 3. REFE 1. 2. 3.	v uction to S on and vic bbservabili BOOKS: Norman RicharD edition 2 IJ Nagra edition 2 RENCE E Kaitshike John J <i>J</i> with MA	quency domain – Nyquist stability criterion – Relative stability a INTRODUCTION TO STATE SPACE MODEL State space – State Equations – Conversion of State space mode versa - Solution of State Equations - State Transition Matrix - ty. TOT S.Nise "Control Systems Engineering", Wiley Student Edition, C.Dorf and Robert.H.Bishop "Modern Control Sytems", Pearsor 2011. ath and M.Gopal "Control Systems Engineering", New Age 2010. BOOKS: O Ogata "Modern Control Engineering"Pearson Education" 201 Azzo and Constantine H.Houpis "Linear Control Systems and TLAB", Marcel Dekker Inc, 6th Edition 2013. C. Goodwin, Stefen F. Grebe and Mario E.Salgado "Contro 2.	analysis odel to tran – Controlla TAL: 45 PE , 5th editio on Educati e Internatic 10 edition. nalysis and	sfer ability ERIODS n 2012 ion,11th onal, 6th

COURSE CODE:
1151EE107

COURSE TITLE: MEASUREMENTS AND INSTRUMENTATION

Т	Р	С
0	0	2

L

2

COURSE CATEGORY: Program Core

PREAMBLE : This course provide adequate knowledge in electrical and electronic instruments and measurements techniques

PREREQUISITE COURSES:

Basic Electrical Engineering

RELEVANT COURSES:

Power Electronics

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand general instrumentation system, error and calibration
- Understand analog and digital techniques to measure voltage, current, energy and power
- Compare AC and DC bridges and also analyse grounding methods.
- Elaborate discussion about storage & display devices.
- Study different transducers and data acquisition system

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain about calibration, classify errors and standards	K2
CO2	Illustrate types of electrical and electronic instruments	K2
CO3	Explain about types of bridges required for measurements and also explain the concept of earth loop current	К2
CO4	Explain about types of display measurement devices	K2
CO5	Explain the types of transducers required for energy conversion	K2

CORRELATION OF COS WITH POS AND PSOs

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н										L	Н	L
CO2	Н	Н										L	Н	L
CO3	Н	Н										L	Н	L
CO4	Н	Н										L	Н	L
CO5	Н	Н										L	Н	L

UNIT I	INTRODUCTION	6
	nal elements of an instrument – Static and dynamic chara	
	ement – Statistical evaluation of measurement data – Standards a	
UNIT II	ELECTRICAL AND ELECTRONICS INSTRUMENTS	6
phase w	e and types of analog and digital voltmeters, ammeters, multime vattmeters and energy meters -Instrument transformers – Instrum ency and phase.	
UNIT III	COMPARISON METHODS OF MEASUREMENT	6
	.C potentiometers, D.C & A.C bridges, transformer ratio bridges, earth and earth loops - Electrostatic and electromagnetic interesting	
UNIT IV	STORAGE AND DISPLAY DEVICES	6
Magneti	c disk and tape – Recorders, CRT display, digital CRO, LED, LCI	D & dot matrix display.
UNIT V	TRANSDUCERS AND DATA ACQUISITION SYSTEMS	6
transduc	cation of transducers – Selection of transducers – Resistive, cers – Temperature transducers - Thermister, Thermocoup	le - LVDT, Pressure
transduc	cers – Temperature transducers - Thermister, Thermocoup cer r– Strain gauges – Piezo electric – Elements of data acquisi	le - LVDT, Pressure tion system – A/D, D/A
transduo transduo converte	cers – Temperature transducers - Thermister, Thermocoup cer r– Strain gauges – Piezo electric – Elements of data acquisi ers.	le - LVDT, Pressure tion system – A/D, D/A
transduc transduc converte FEXT BC 1. E	cers – Temperature transducers - Thermister, Thermocoup cer r– Strain gauges – Piezo electric – Elements of data acquisi ers.	le - LVDT, Pressure tion system – A/D, D/A TOTAL: 30 PERIODS
transduc converte TEXT BC 1. E 2. A	cers – Temperature transducers - Thermister, Thermocoup cer r– Strain gauges – Piezo electric – Elements of data acquisi ers. DOKS: E.O. Doebelin, 'Measurement Systems – Application and Desi	le - LVDT, Pressure tion system – A/D, D/A TOTAL: 30 PERIODS gn', Tata McGraw Hil
transduc converte TEXT BC 1. E 2. A	 Cers – Temperature transducers - Thermister, Thermocoup cer r– Strain gauges – Piezo electric – Elements of data acquisiters. COKS: E.O. Doebelin, 'Measurement Systems – Application and Desi publishing company, 2003. A.K. Sawhney, 'A Course in Electrical & Electronic Measureme 	le - LVDT, Pressure tion system – A/D, D/A TOTAL: 30 PERIODS gn', Tata McGraw Hil
transduc converte TEXT BC 1. E 2. A E REFERI	 Cers – Temperature transducers - Thermister, Thermocoup cer r– Strain gauges – Piezo electric – Elements of data acquisiters. COKS: E.O. Doebelin, 'Measurement Systems – Application and Desi publishing company, 2003. A.K. Sawhney, 'A Course in Electrical & Electronic Measureme Dhanpat Rai and Co, 2004. 	le - LVDT, Pressure tion system – A/D, D/A TOTAL: 30 PERIODS gn', Tata McGraw Hil nts & Instrumentation'
transduc transduc converte 1. E 2. <i>A</i> [REFERI 1. [Cers – Temperature transducers - Thermister, Thermocoup cer r– Strain gauges – Piezo electric – Elements of data acquisiters. COKS: E.O. Doebelin, 'Measurement Systems – Application and Desi publishing company, 2003. A.K. Sawhney, 'A Course in Electrical & Electronic Measureme Dhanpat Rai and Co, 2004. ENCE BOOKS: 	le - LVDT, Pressure tion system – A/D, D/A TOTAL: 30 PERIODS gn', Tata McGraw Hil nts & Instrumentation'
TEXT BC 1. E 2. A E REFERI 1. E 2. H 3. N	 Cers – Temperature transducers - Thermister, Thermocoup cer r– Strain gauges – Piezo electric – Elements of data acquisiters. COKS: E.O. Doebelin, 'Measurement Systems – Application and Desi publishing company, 2003. A.K. Sawhney, 'A Course in Electrical & Electronic Measureme Dhanpat Rai and Co, 2004. ENCE BOOKS: D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, 1995. Martin Reissland, 'Electrical Measurements', New Age Internation 	le - LVDT, Pressure tion system – A/D, D/A TOTAL: 30 PERIODS gn', Tata McGraw Hill nts & Instrumentation', of India Pvt Ltd, 2003. al (P) Ltd., Delhi, 2001.
TEXT BC 1. E 2. A 2. A 2. A 3. N 4. S	 Cers – Temperature transducers - Thermister, Thermocoup cer r– Strain gauges – Piezo electric – Elements of data acquisit ers. COKS: E.O. Doebelin, 'Measurement Systems – Application and Desi publishing company, 2003. A.K. Sawhney, 'A Course in Electrical & Electronic Measureme Dhanpat Rai and Co, 2004. ENCE BOOKS: D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, 1995. 	le - LVDT, Pressure tion system – A/D, D/A TOTAL: 30 PERIODS gn', Tata McGraw Hill nts & Instrumentation', of India Pvt Ltd, 2003. al (P) Ltd., Delhi, 2001.
transduc transduc converte 1. E 2. A 2. A 5. E	 Cers – Temperature transducers - Thermister, Thermocoup cer r– Strain gauges – Piezo electric – Elements of data acquisiters. COKS: E.O. Doebelin, 'Measurement Systems – Application and Desi publishing company, 2003. A.K. Sawhney, 'A Course in Electrical & Electronic Measureme Dhanpat Rai and Co, 2004. ENCE BOOKS: D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, 1995. Martin Reissland, 'Electrical Measurements', New Age Internation J. B. Gupta, 'A Course in Electronic and Electrical Measurements 	le - LVDT, Pressure tion system – A/D, D/A TOTAL: 30 PERIODS gn', Tata McGraw Hill nts & Instrumentation', of India Pvt Ltd, 2003. al (P) Ltd., Delhi, 2001. ', S. K. Kataria & Sons,
transduc converte TEXT BC 1. E 2. A 2. A 5. E 5. E	 Cers – Temperature transducers - Thermister, Thermocoup cer r– Strain gauges – Piezo electric – Elements of data acquisit ers. COKS: E.O. Doebelin, 'Measurement Systems – Application and Desi publishing company, 2003. A.K. Sawhney, 'A Course in Electrical & Electronic Measureme Dhanpat Rai and Co, 2004. ENCE BOOKS: D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, 1995. Martin Reissland, 'Electrical Measurements', New Age Internation J. B. Gupta, 'A Course in Electronic and Electrical Measurements Delhi, 2003. David A Bell, Electronic Instrumentation and Measurement, 	le - LVDT, Pressure tion system – A/D, D/A TOTAL: 30 PERIODS gn', Tata McGraw Hill nts & Instrumentation', of India Pvt Ltd, 2003. al (P) Ltd., Delhi, 2001. ', S. K. Kataria & Sons,

COUI				00		דודו ו	E∙ TR	ΔΝςΜ		N AND		_ Т	Р	С
	51EE		•	00	UNGL							3 0	0	3
COURS	SE CA	TEG	ORY:	Progr	am Co	ore								
	nissior nance	n line: parar	s of p neters	oower , perfo	syste orman	ems, r ce of i	model insula	ling o	f the	transm	nission	lines	for cor	eters in nputing rmining
PRERE	QUIS	ITE C	OUR	SES:										
Electro	magn	etic fie	elds, C	ircuit .	Analys	sis								
RELAT	ED C	OURS	SES:											
Power	Systei	m Ana	alysis,	Powe	r Syst	em Op	peratio	on & C	ontrol					
COURS	SE ED	UCA	TIONA	AL OB	JECT	IVES	:							
The obj	jective	es of tl	ne cou	irse ai	re to:									
•	Obtai	n the		alent c	ircuits	•				ne para s for de			age	
	•				•	anical	desig	n of o\	verhea	d lines	and ins	sulators	5.	
	•		I the ty	-			•							
•	Calcu	late th	ne volt	age d	rop or	DC a	ind AC	C distri	butors	6.				
COURS	SE OL	лтсо	MES :											
Upo	on the	succe	essful	compl	etion	of the	cours	e, stu	dents	will be a	able to:			
CO Nos.				C	ourse	Outco	omes	1			(B	nowled ased c oom's	on revi	sed
CO1			the tr			line m	odels	and s	olve fo	or its		ł	<3	
CO2	Dev bas	elop t	he eq distar	uivale	nt circ			ransm ge reg				ł	<3	
CO3	Ider and	ntify th insula	e perf ators.		-			overh				ł	〈 3	
CO4	cab	les.						f unde	0			ł	<2	
CO5			ne type nance				istribu	tors a	nd sol	ve for		ł	〈 3	
CORR														
COs				PO4	PO5	PO6		PO8	PO9	PO10	PO11	PO12		PSO2
CO1 CO2	Н	H H	M				L				L		H	
CO2	H H	H H	M M				L				L	L	H H	L
CO4	Н	M	L								L		H	
CO5	Н	Н	М								L	L	Н	L

UNIT I	TRANSMISSION LINE PARAMETERS	g
Resistan Symmetr	ers of single and three phase transmission lines with single ce, inductance and capacitance of solid, stranded and ical and unsymmetrical spacing and transposition - application in and proximity effects - interference with neighbouring commu	bundled conductors, on of self and mutual
UNIT II	MODELLING AND PERFORMANCE OF TRANSMISSION LINES	9
diagram,	ation of lines - short line, medium line and long line - equiv attenuation constant, phase constant, surge impedance; trans egulation, real and reactive power flow in lines- surge imped	mission efficiency and
UNIT III	INSULATORS & MECHANICAL DESIGN OF LINES	9
Classifica	cal design of Overhead lines – Line supports – Overheation - Voltage distribution in suspension insulators - string efficion – effects of wind and ice - Formation of Corona - critical voltage ormance.	ency – Stress and sag
UNIT IV	UNDERGROUND CABLES	9
of cables	son between overhead line and underground cable – Constructi - insulation resistance - potential gradient - capacitance of sing grading of cables - Types of grading of cables.	
UNIT V	DISTRIBUTORS	9
		5
fed at on AC Distri	ibutors: Concentrated and distributed loads - Two wire distribute end - fed at both ends - Ring main feeder - Advantages - Three butors: Concentrated loads with power factor refers to load point ee phase three wire and three phase four wire distributors.	tor- radial distributor - e wire distributor.
fed at on AC Distri	e end - fed at both ends - Ring main feeder - Advantages - Thre butors: Concentrated loads with power factor refers to load point	tor- radial distributor - e wire distributor. t - refer to common
fed at on AC Distri load - thr	e end - fed at both ends - Ring main feeder - Advantages - Thre butors: Concentrated loads with power factor refers to load poin ee phase three wire and three phase four wire distributors.	itor- radial distributor - e wire distributor.
fed at on AC Distri load - thr FEXT BO	e end - fed at both ends - Ring main feeder - Advantages - Thre butors: Concentrated loads with power factor refers to load poin ee phase three wire and three phase four wire distributors.	tor- radial distributor - e wire distributor. t - refer to common TOTAL: 45 PERIODS
fed at on AC Distri load - thr FEXT BO	e end - fed at both ends - Ring main feeder - Advantages - Three butors: Concentrated loads with power factor refers to load point ee phase three wire and three phase four wire distributors. OKS: /adhwa,C.L., 'Electrical power systems', New age Int	tor- radial distributor - e wire distributor. t - refer to common TOTAL: 45 PERIODS ternational Pvt Ltd.
fed at on AC Distri load - thr FEXT BO 1. W pt 2. G	e end - fed at both ends - Ring main feeder - Advantages - Thre butors: Concentrated loads with power factor refers to load point ee phase three wire and three phase four wire distributors. OKS: /adhwa,C.L., 'Electrical power systems', New age In- ublishers,1995.	tor- radial distributor - e wire distributor. t - refer to common TOTAL: 45 PERIODS ternational Pvt Ltd.
fed at on AC Distri load - thr FEXT BO 1. W pt 2. G REFERE	e end - fed at both ends - Ring main feeder - Advantages - Three butors: Concentrated loads with power factor refers to load point ee phase three wire and three phase four wire distributors. OKS: /adhwa,C.L., 'Electrical power systems', New age In- ublishers,1995. supta B.R., 'Power system Analysis & Design', Wheeler Publishir	tor- radial distributor - e wire distributor. t - refer to common TOTAL: 45 PERIODS ternational Pvt Ltd. ng, 2006.
fed at on AC Distri load - thr TEXT BO 1. W pt 2. G REFERE 1. C 2. A	e end - fed at both ends - Ring main feeder - Advantages - Three butors: Concentrated loads with power factor refers to load point ee phase three wire and three phase four wire distributors. OKS: /adhwa,C.L., 'Electrical power systems', New age In- ublishers,1995. upta B.R., 'Power system Analysis & Design', Wheeler Publishir NCE BOOKS:	tor- radial distributor - e wire distributor. t - refer to common TOTAL: 45 PERIODS ternational Pvt Ltd. ng, 2006. BS,1985.
fed at on AC Distri load - thr FEXT BO 1. W pu 2. G REFERE 1. C 2. A W	e end - fed at both ends - Ring main feeder - Advantages - Three butors: Concentrated loads with power factor refers to load point ee phase three wire and three phase four wire distributors. OKS: /adhwa,C.L., 'Electrical power systems', New age In- ublishers,1995. upta B.R., 'Power system Analysis & Design', Wheeler Publishir NCE BOOKS: otton H., 'Transmission and distribution of electrical Energy', ELI A. Chakrabarti ,P. V. Gupta , Soni M, Text Book on 'Power	tor- radial distributor - e wire distributor. t - refer to common TOTAL: 45 PERIODS ternational Pvt Ltd. ng, 2006. BS,1985. System Engineering',
fed at on AC Distri load - thr TEXT BO 1. W pr 2. G REFERE 1. C 2. A W 3. V	e end - fed at both ends - Ring main feeder - Advantages - Three butors: Concentrated loads with power factor refers to load point ee phase three wire and three phase four wire distributors. OKS: /adhwa,C.L., 'Electrical power systems', New age In- ublishers,1995. upta B.R., 'Power system Analysis & Design', Wheeler Publishir NCE BOOKS: otton H., 'Transmission and distribution of electrical Energy', ELI A. Chakrabarti ,P. V. Gupta , Soni M, Text Book on 'Power /heeler Publishing, 2009.	tor- radial distributor - e wire distributor. t - refer to common TOTAL: 45 PERIODS ternational Pvt Ltd. ng, 2006. BS,1985. System Engineering',

COURSE	CODE									_	L	Т	P	С
1151E			COU	RSE T	ITLE:	POW	ER EL	ECTF	RONICS	5	2	2	0	3
COURSE O	ATEGO	ORY:	Progra	am Co	re									1
PREAMBL understand available in	ing the	effi	cient	conve	rsion,	contro	ol and	l conc	litioning	g of e	elec	tric po		asis for om its'
PREREQU	ISITE C	OURS	SES: E	Electro	onic De	evices	& Cire	cuits, (Circuit /	Analy	sis			
RELATED	COURS	SES: L	ED Li	ghting	Tech	nology	, Solio	d State	e Drives	5				
COURSE E		ΓΙΟΝΑ	L OB	JECT	IVES :									
The objecti	ves of th	ne cou	irse ar	e to,										
	an ove racterist		of diff	erent	types	of pov	ver se	mi-co	nductor	devi	ces	and t	heir sv	vitching
	lerstand ifiers.	the	operat	tion, c	charac	teristic	cs and	d perf	ormano	ce pa	ram	neters	of co	ntrolled
	dy the ould	operat	tion, s	witchi	ng teo	chniqu	ies ar	nd bas	sic topo	ologie	s o	of DC-	DC sv	vitching
	rn the erters an								•		uls	e wid	th mo	dulated
 Kno sup 	w the p ply.	ractica	al appl	icatior	ns of p	ower	electro	onics d	converte	ers in	cor	ndition	ing the	power
COURSE O	OUTCO	MES :												
Upon th	e succe	essful	compl	etion o	of the	course	e, stud	lents v	vill be a	ble to):			
CO Nos.				Cou	rse Oi	utcom	es				d	omair œvise	of lear (Base d Bloo onomy	ed on om's
CO1	Explain switchir	•••	•			condu	ctor c	levice	s and t	their			K2	
CO2	Compa parame	re the	e ope	ration,	char		stics a	and p	erforma	ance			K2	
CO3	Compa topolog							iques	and b	asic			K2	
CO4	Summa and ha	rmonio	c redu	ction r	netho	ds.							K2	
CO5	Identify voltage	•											K3	
CORRELA	TION O	F CO	s WIT	H POs	AND	PSOs	5							
COs PO	1 PO2		PO4	PO5	PO6	P07	PO8	PO 9	PO10	PO1	1 F	PO12	PSO1	PSO2
CO1 H	L	M		H								L	<u>L</u>	L
CO2 H		M		Н								L	<u>H</u>	L
CO3 H CO4 H		M M		H H									<u>H</u> H	
CO4 H		M		H								L	<u>н</u>	L

COURS	E CONTENT:	T
UNIT I	POWER SEMI CONDUCTOR DEVICES	g
SCR, T di/dt, dv	switching devices overview: ideal & real switching characteristic RIAC, MOSFET, GTO, IGBT - VI characteristics, Turn-on, Turn-o v/dt, over current, over voltage, specifications, losses, thermal cha operation, triggering circuits.	off methods; protection
UNIT II	CONTROLLED RECTIFIERS	g
with R operation load a improve convert	on and analysis of single and three phase rectifiers – half and fu RL and RLE loads with and without freewheeling diodes; on – wave forms, gate time control, output voltage, input current nd source inductance. Commutation Techniques - Power ement methods – multi-phase width controlled, symmetrical a er; dual converter modes – four-quadrant operation with and wir firing circuits.	converter and inverter , power factor, effect of factor and harmonic angle controlled; series
UNIT II	CHOPPERS	9
multi-pl	es of high power chopper circuits – voltage commutated, curren hase chopper, multi-quadrant operation, switch mode regulators , boost and buck boost regulators - time ratio control, variable	- principle of operation
	/ INVERTERS	9
wavefo and de	es of high power VSI and CSI inverters, Modified McMurray, aums at load and commutating elements, analysis of three phase in ta loads - control and modulation techniques - unipolar, bipolar cy control - harmonics study.	nverter circuits with star
UNIT V	AC CHOPPER AND CYCLOCONVERETERS	g
control	e of single phase and three-phase AC voltage controller – ON/OF - principle of single phase and three phase cyclo converters circu ues and firing pulse generation – Applications - VVVF, UPS, Fan	its, different control
		TOTAL: 45 PERIODS
	DOKS:	
2.	Muhammad H. Rashid, "Power Electronics: Circuits, Devices Edition, Pearson Education/Prentice Hall, 2004. Singh, M.D. and Khanchandani, K.B., "Power Electronics", 2nd Hill, 2004.	
REFER	ENCE BOOKS:	
1. 2. 3.	Bhimbra, P. S., "Power Electronics", 4th Edition, Dhanpat Rai and Bimal K. Bose, "Modern Power Electronics and AC Drives", Pears Ned Mohan, Tore M. Undeland, William P. Robbins, "Power Applications and Design", 3rd Edition, John Wiley and Sons, 2003	son Education, 2003. Electronics Converters
	E RESOURCES:	
	https://nptel.ac.in/courses/108101126	
1.		

COURSE CODE:	COURSE TITLE: POWER SYSTEM ANALYSIS	L	Т	Р	С
1151EE110	COURSE HILE: POWER STSTEM ANALTSIS	3	0	0	3
COURSE CATEGORY	/.				

COURSE CATEGORY:

Program Core

PREAMBLE :

The course provides to the students with essential knowledge in power systems required for its analysis. It includes per-unit system, line models, application of network matrices techniques, power flow calculation for the steady-state and analysis, power system fault analysis including: symmetrical faults and unsymmetrical faults and power system stability.

PREREQUISITE COURSES:

Transmission & Distribution

RELATED COURSES:

Power system operation and control, Power system simulation Lab

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Introduce the characteristics of different transmission line models, steady state analysis and transient analysis of power systems
- Understand and performs the load flow analysis calculation for a power system network
- Analyse short circuit faults in power system.
- Provide the basic concept on power system stability

COURSE OUTCOMES :

CO Nos					Coui	rse Oi	utcom	ies				domair revise	of lear n (Base ed Bloo onomy	ed on om's
CO		Explain he mo				•				nalysis	and		K2	
CO	2 F	Perforn	n load	flow a	nalysi	S							K3	
CO	3 I	dentify	symn	netrica	l fault	s in po	ower s	ystem	S				K3	
CO	4 A	Analyze	e unsy	rmmet	rical fa	aults ir	n powe	er syst	ems				K3	
CO	5 F	Perforn	n trans	sient s	tability	' analy	sis of	powe	r syste	ems			K3	
CORR	ELAT	ION O	F CO	s WIT	H POs	AND	PSOs	5						
COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	Н	Н	М	L	L								Н	L
CO2	Н	Н	Н	М	L						L	L	Н	L
CO3	Н	Н	Н	М	L		L				L	L	Н	L
CO4	Н	Н	Н	М	L		L				L	L	Н	L
CO5	Н	Μ	М	М								L	Н	L

COURSE	CONTENT:	1
UNIT I	THE POWER SYSTEM – AN OVERVIEW AND MODELLING	9
	Power System - Basic Components of a power system - Per Ph ransformer model - line model - The per unit system - Change	
UNIT II	POWER FLOW ANALYSIS	9
equations	on - Bus Classification - Bus admittance matrix - Solution - Gauss seidal method - Newon raphson method - Fast de d comparison of the three methods.	
UNIT III	FAULT ANALYSIS-BALANCED FAULT	9
	on – Balanced three phase fault – short circuit capacity – s impedance matrix – algorithm for formation of the bus impeda	
UNIT IV	FAULT ANALYSIS – SYMMETRICAL COMPONENTS AND UNBALANCED FAULT	9
networks	on – Fundamentals of symmetrical components – sequence i – single line to ground fault – line fault - Double line to ground using bus impedance matrix.	
UNIT V	POWER SYSTEM STABILITY	9
Term stal criterion -	cepts and definitions – Rotor angle stability – Voltage stability bility – Classification of stability – An elementary view of transie - Reponses to a short circuit fault- factors influencing transient n methods – Euler method – modified Euler method – Runge –	nt stability – Equal area stability – Numerical
		TOTAL: 45 PERIODS
TEXT BC	OKS:	
	adi Saadat " Power system analysis", Tata McGraw Hill Publish elhi, 2002 (Unit I, II, III, IV)	ing Company, New
	Kundur, "Power System Stability and Control", Tata McGraw H ew Delhi, 1994 (Unit V)	ill Publishing Company,
REFERE	NCE BOOKS:	
	l.Nagrath and D.P.Kothari, 'Modern Power System Analysis', T Iblishing company, New Delhi, 1990.	ata McGraw-Hill
ONLINE	RESOURCES:	
1. <u>ht</u>	tps://nptel.ac.in/courses/108105104	

COURSE TITLE: POWER SYSTEM OPERATION AND CONTROL

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Program Core

PREAMBLE: This course discussed about the preparatory work necessary for meeting the next day's operation and the various control actions to be implemented on the Power system network to meet the variations in load.

PREREQUISITE COURSES: Power System Analysis

RELATED COURSES: Protection and Switchgear

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Get an overview of real and reactive power operation and control
- Estimate the load demand and commit the generating units accordingly
- Create awareness on recent trends in power system operation and control

COURSE OUTCOMES :

CO Nos					Cou	rse Oi	utcom	es				domaiı revise	of lear n (Base ed Bloc onomy	ed on om's
CO1		Illustrat regulat				of sy	stem	freque	ency a	and volt	age		K2	
CO2	/	Summa commi		netho	ds in	Foreca	asting	of ba	se loa	id and	Unit		K2	
CO3	3	Explair	n plant	level	and sy	/stem	level o	contro	l of rea	al powe	r		K2	
CO4	ŀ		s pow	er sys	•	•			•	osses ler for			K3	
COS		Identify methoo					otion (of Rea	active	power	and		K3	
CORRI	ELA		F CO	s WIT	H POs	S AND	PSOs	5						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L								L		L	Н	L
CO2	Н	Μ	М	L	L					L			Н	L
CO3	Н	Μ	М	L	М					L			Н	L
CO4	Н	Μ	М	L	М					L			Н	L
CO5	Н	L								L		L	Н	L
COUR	SE C	ONTE	NT:											
UNIT I	I	NTRO	DUCTI	ON										9
Approa	ch a	dopted	in util	ities fo	or prov	/iding	reliabl	e, qua	ality ar	nd econ	omic e	electric p	ower s	supply -
Necess	sity f	or regu	ulation	of sy	stem	freque	ency a	and vo	oltage	- P-F	and Q	-V cont	rol stru	icture -

UNIT II	LOAD FORECASTING AND UNIT COMMITMENT	9
base loa	ecasting - components of system load - classification of base lo d by method of least square fit - Introduction to unit commitme nent - unit commitment using priority list method and dynamic pro	ent - constraints in unit
UNIT III	REAL POWER CONTROL	9
speed go of two ge SYSTEM - static a single ar	CONTROL: Power control mechanism of individual machine - overning mechanism - speed load characteristics of governing mechanism - speed load characteristics of governing mechanism in parallel. A CONTROL: Division of power system into control areas - LFC and dynamic analysis of uncontrolled system - proportional plue ea - LFC control, of two area system - uncontrolled case - static with frequency bias control of two area.	nechanism - Regulation control of a single area us integral control of a
UNIT IV	ECONOMICS DISPATCH	9
	ntal cost curve - co-ordination equations with losses neglected ation equations with loss included (No derivation of BMN co-eff	
ordinatio	n equations using BMN co-efficient by iteration method - Base Economic dispatch controller added to LFC.	point and participation
ordinatio factors - UNIT V	Economic dispatch controller added to LFC. PRIORITY POWER CONTROL CONTROL: Fundamental characteristics of excitation system - Bl	9
ordinatio factors - UNIT V LOCAL (exciter sy SYSTEM	Economic dispatch controller added to LFC. PRIORITY POWER CONTROL CONTROL: Fundamental characteristics of excitation system - Bl ystem I CONTROL: Generation and absorption of reactive power - met of reactive power - static shunt capacitor/inductor VAR compe	9 ock diagram model of hod of voltage control -
ordinatio factors - UNIT V LOCAL (exciter sy SYSTEM injection	Economic dispatch controller added to LFC. PRIORITY POWER CONTROL CONTROL: Fundamental characteristics of excitation system - Bl ystem I CONTROL: Generation and absorption of reactive power - met of reactive power - static shunt capacitor/inductor VAR compe	9 ock diagram model of hod of voltage control -
ordinatio factors - UNIT V LOCAL (exciter sy SYSTEM injection	Economic dispatch controller added to LFC. PRIORITY POWER CONTROL CONTROL: Fundamental characteristics of excitation system CONTROL: Generation and absorption of reactive power - met of reactive power - static shunt capacitor/inductor VAR compener.	9 ock diagram model of hod of voltage control - ensator - tap changing
ordinatio factors - UNIT V LOCAL (exciter sy SYSTEM injection transform TEXT B(1. C	Economic dispatch controller added to LFC. PRIORITY POWER CONTROL CONTROL: Fundamental characteristics of excitation system CONTROL: Generation and absorption of reactive power - met of reactive power - static shunt capacitor/inductor VAR compener.	9 ock diagram model of hod of voltage control - ensator - tap changing TOTAL: 45 PERIODS
ordinatio factors - UNIT V LOCAL (exciter sy SYSTEM injection transform TEXT B(1. C p 2. I.	Economic dispatch controller added to LFC. PRIORITY POWER CONTROL CONTROL: Fundamental characteristics of excitation system CONTROL: Generation and absorption of reactive power - met of reactive power - static shunt capacitor/inductor VAR compener. DOKS: DILE I. Elgerad, "Electric Energy System Theory and Introduction	9 ock diagram model of hod of voltage control - ensator - tap changing TOTAL: 45 PERIODS
ordinatio factors - UNIT V LOCAL (exciter sy SYSTEM injection transform TEXT B(1. C p 2. I. c 3. A	Economic dispatch controller added to LFC. PRIORITY POWER CONTROL CONTROL: Fundamental characteristics of excitation system - Bl ystem A CONTROL: Generation and absorption of reactive power - met of reactive power - static shunt capacitor/inductor VAR compener. DILE I. Elgerad, "Electric Energy System Theory and Introduction ublishing company, New Delhi, 1983. J.Nagrath, D.P.Kothari, "Power System Engineering", Tata Met	9 ock diagram model of hod of voltage control - ensator - tap changing TOTAL: 45 PERIODS on", Tata Mc Graw Hill c Graw Hill publishing
ordinatio factors - UNIT V LOCAL (exciter sy SYSTEM injection transform TEXT B(1. C p 2. I. c 3. A W	Economic dispatch controller added to LFC. PRIORITY POWER CONTROL CONTROL: Fundamental characteristics of excitation system - Bl ystem CONTROL: Generation and absorption of reactive power - met of reactive power - static shunt capacitor/inductor VAR compener. DIle I. Elgerad, "Electric Energy System Theory and Introductic ublishing company, New Delhi, 1983. J.Nagrath, D.P.Kothari, "Power System Engineering", Tata Me ompany Ltd., 1998. Ilen J.Wood, Bruce F. Wollenbarg, "Power Generation, operation	9 ock diagram model of hod of voltage control - ensator - tap changing TOTAL: 45 PERIODS on", Tata Mc Graw Hill c Graw Hill publishing
ordinatio factors - UNIT V LOCAL (exciter sy SYSTEM injection transform TEXT BC 1. C p 2. I. c 3. A W REFERE 1. B	Economic dispatch controller added to LFC. PRIORITY POWER CONTROL CONTROL: Fundamental characteristics of excitation system - Bl ystem A CONTROL: Generation and absorption of reactive power - met of reactive power - static shunt capacitor/inductor VAR compener. DIle I. Elgerad, "Electric Energy System Theory and Introductic ublishing company, New Delhi, 1983. J.Nagrath, D.P.Kothari, "Power System Engineering", Tata Me ompany Ltd., 1998. Ilen J.Wood, Bruce F. Wollenbarg, "Power Generation, operat Viley and sons, 1984.	9 ock diagram model of hod of voltage control - ensator - tap changing TOTAL: 45 PERIODS on", Tata Mc Graw Hill c Graw Hill publishing tion and control", John
ordinatio factors - UNIT V LOCAL (exciter sy SYSTEM injection transform TEXT B(1. C p 2. I. C 3. A W REFERE 1. B A 2. A	Economic dispatch controller added to LFC. PRIORITY POWER CONTROL CONTROL: Fundamental characteristics of excitation system - Bl ystem CONTROL: Generation and absorption of reactive power - met of reactive power - static shunt capacitor/inductor VAR compener. DOKS: DIle I. Elgerad, "Electric Energy System Theory and Introductic ublishing company, New Delhi, 1983. J.Nagrath, D.P.Kothari, "Power System Engineering", Tata Me ompany Ltd., 1998. Illen J.Wood, Bruce F. Wollenbarg, "Power Generation, operat Viley and sons, 1984. ENCE BOOKS: B.M.Weedy, "Electric Power System", John Wiley & sons, Elsevie	9 ock diagram model of hod of voltage control - ensator - tap changing TOTAL: 45 PERIODS on", Tata Mc Graw Hill on", Tata Mc Graw Hill c Graw Hill publishing tion and control", John er publishing company, ower System Analysis

Т	Р	С
0	0	3

L

3

COURSE CATEGORY:

Program Core

PREAMBLE :

This course Electrical machine design provides an introduction to the design of various DC and AC Machines and gives a general idea to the computer aided design of Electrical machines.

PREREQUISITE COURSES:

DC Machines and Transformers, AC Machines

RELATED COURSES:

Special Electrical Machines

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Expose the students towards the design of various types of electrical machines
- Understand the basic concept of armature and field winding of DC machine
- Understand of basic design and cooling system of electrical transformer
- Understand the concept of induction machine
- Understand the concept of synchronous machine

COURSE OUTCOMES :

CO Nos				C	Course	e Outo	come	S				Level o lomain revise taxo	(Base	ed on m's
CO			the stu s types (d ther	mal ra	ating of			K2	
CO	2	Explair	n armati	ure and	field s	syster	ns for	D.C n	nachir	nes.			K2	
CO			nstrate t ormers.	he desi	gn and	d cool	ing sy	/stem	of				K2	
CO	4	Constr machir	ruct the nes.	design	of stat	or and	d roto	r of ind	ductio	n			K3	
CO			e appro onous r			parar	neters	s of sta	ator a	nd roto	r in		K3	
CORR	ELA		OF COs	WITH I	POs A	ND P	SOs							
COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ	Μ	М	L	L						L		М	Μ
CO2	Η	Н	Н	М	L						L		Н	Μ
CO3	Η	Н	Η	М	L						L		Η	М
CO4	Η	Н	Η	М	L						L		H	Μ
CO5	Η	Н	Н	М	L						L		H	Μ

COURS		
UNIT I	INTRODUCTION	9
concep contrac	rd specification for frame size - conductors and insulation of at of magnetic circuit - MMF of electrical machines - Real and Appa ction factor - Thermal rating of electrical apparatus – Performance heat flow, heating and cooling, temperature rise - turbo-alternator	arent flux density - Gap prediction from thermal
UNIT II	A.C MACHINES	9
	uctional details of DC machine - Output equation - Choice of p - Design of armature - Design of commutators and brush - Armatu	Ű,
UNIT II	I TRANSFORMERS	9
optimu current	uctional features - Output equation, output rating of single ph m design - Design of core, design of winding - Calculation of circu - losses – efficiency, equivalent leakage reactance - per unit regioning tubes - Temperature rise.	it parameters - No load
	V INDUCTION MACHINES	9
	uctional details - Output equation - Choice of specific loadings - I Design of slip ring rotor - Design of end rings - Calculation of circu	<u> </u>
	- Circle diagram.	
	- Circle diagram.	9
current UNIT V Constru pole ma length	- Circle diagram.	9 ding - Design of salient rs Estimation of air gap
current UNIT V Constru pole ma length	- Circle diagram. DESIGN OF SYNCHRONOUS MACHINES uction details - Runaway speed - Output equations - Choice of loa achine - Short circuit ratio - Armature design Armature parameter - Design of damper winding - Determination of full load field I	9 ding - Design of salient rs Estimation of air gap
current UNIT V Constru pole ma length	- Circle diagram. DESIGN OF SYNCHRONOUS MACHINES uction details - Runaway speed - Output equations - Choice of loa achine - Short circuit ratio - Armature design Armature parameter - Design of damper winding - Determination of full load field I g - Introduction to computer aided design.	g ding - Design of salient s Estimation of air gap MMF - Design of field
current UNIT V Constru pole ma length winding FEXT B	- Circle diagram. DESIGN OF SYNCHRONOUS MACHINES uction details - Runaway speed - Output equations - Choice of loa achine - Short circuit ratio - Armature design Armature parameter - Design of damper winding - Determination of full load field I g - Introduction to computer aided design.	9 ding - Design of salient rs Estimation of air gap MMF - Design of field TOTAL: 45 PERIODS
current UNIT V Constru pole ma length winding FEXT B	- Circle diagram. DESIGN OF SYNCHRONOUS MACHINES uction details - Runaway speed - Output equations - Choice of loa achine - Short circuit ratio - Armature design Armature parameter - Design of damper winding - Determination of full load field I g - Introduction to computer aided design. OOKS: Mittle V.M. and Mittl E.A, Design of Electrical Machines, standard	g ding - Design of salient rs Estimation of air gap MMF - Design of field TOTAL: 45 PERIODS publishers Distribution,
current UNIT V Constru pole ma length winding FEXT B 1. 2.	- Circle diagram. DESIGN OF SYNCHRONOUS MACHINES uction details - Runaway speed - Output equations - Choice of loa achine - Short circuit ratio - Armature design Armature parameter - Design of damper winding - Determination of full load field I g - Introduction to computer aided design. OOKS: Mittle V.M. and Mittl E.A, Design of Electrical Machines, standard Fourth edition, 1996.	g ding - Design of salient rs Estimation of air gap MMF - Design of field TOTAL: 45 PERIODS publishers Distribution,
Current UNIT V Constru pole ma length winding TEXT B 1. 2. REFER 1.	- Circle diagram. DESIGN OF SYNCHRONOUS MACHINES uction details - Runaway speed - Output equations - Choice of loa achine - Short circuit ratio - Armature design Armature parameter - Design of damper winding - Determination of full load field I g - Introduction to computer aided design. OOKS: Mittle V.M. and Mittl E.A, Design of Electrical Machines, standard Fourth edition, 1996. Sawhney, A.K. A course in Electrical Machine Design, Dhanpat Revealed to the standard standard in the standard mathematical standard in the standard mathematical standard mathematical machine besign, Dhanpat Revealed to the standard mathematical mathmatematical mathematical mathematical mathemat	g ding - Design of salient 's Estimation of air gap MMF - Design of field TOTAL: 45 PERIODS publishers Distribution, ai & sons, 1993.
Current UNIT V Constru pole ma length winding TEXT B 1. 2. REFER 1. 2.	- Circle diagram. DESIGN OF SYNCHRONOUS MACHINES uction details - Runaway speed - Output equations - Choice of loa achine - Short circuit ratio - Armature design Armature parameter - Design of damper winding - Determination of full load field I g - Introduction to computer aided design. OOKS: Mittle V.M. and Mittl E.A, Design of Electrical Machines, standard Fourth edition, 1996. Sawhney, A.K. A course in Electrical Machine Design, Dhanpat Re RENCE BOOKS: Rai, H.M. Electrical Machine Design, Sathiya Prakashan Publ	ding - Design of salient rs Estimation of air gap MMF - Design of field TOTAL: 45 PERIODS publishers Distribution, ai & sons, 1993. ications, Third edition
Current UNIT V Constru- pole ma length winding TEXT B 1. 2. REFER 1. 2. 3.	 Circle diagram. DESIGN OF SYNCHRONOUS MACHINES uction details - Runaway speed - Output equations - Choice of loa achine - Short circuit ratio - Armature design Armature parameter - Design of damper winding - Determination of full load field I g - Introduction to computer aided design. OOKS: Mittle V.M. and Mittl E.A, Design of Electrical Machines, standard Fourth edition, 1996. Sawhney, A.K. A course in Electrical Machine Design, Dhanpat Reserve BOOKS: Rai, H.M. Electrical Machine Design, Sathiya Prakashan Publ 1992. Say M.G., The Performance & Design of Alternating current Ma 	ding - Design of salient rs Estimation of air gap MMF - Design of field TOTAL: 45 PERIODS publishers Distribution, ai & sons, 1993. ications, Third edition, chines Isaac Pitman &
Current UNIT V Constru- pole ma length winding TEXT B 1. 2. REFER 1. 2. 3.	 Circle diagram. DESIGN OF SYNCHRONOUS MACHINES uction details - Runaway speed - Output equations - Choice of loa achine - Short circuit ratio - Armature design Armature parameter - Design of damper winding - Determination of full load field I g - Introduction to computer aided design. OOKS: Mittle V.M. and Mittl E.A, Design of Electrical Machines, standard Fourth edition, 1996. Sawhney, A.K. A course in Electrical Machine Design, Dhanpat Reserve BOOKS: Rai, H.M. Electrical Machine Design, Sathiya Prakashan Publ 1992. Say M.G., The Performance & Design of Alternating current Ma sons Ltd., London 1995. Clayton, A.E., Performance & Design of Direct current Machine 	ding - Design of salien rs Estimation of air gap MMF - Design of field TOTAL: 45 PERIODS publishers Distribution, ai & sons, 1993. ications, Third edition chines Isaac Pitman 8
Current UNIT V Constru- pole ma length winding TEXT B 1. 2. REFER 1. 2. 3.	 Circle diagram. DESIGN OF SYNCHRONOUS MACHINES uction details - Runaway speed - Output equations - Choice of loa achine - Short circuit ratio - Armature design Armature parameter - Design of damper winding - Determination of full load field I g - Introduction to computer aided design. OOKS: Mittle V.M. and Mittl E.A, Design of Electrical Machines, standard Fourth edition, 1996. Sawhney, A.K. A course in Electrical Machine Design, Dhanpat Reserver Books: Rai, H.M. Electrical Machine Design, Sathiya Prakashan Publ 1992. Say M.G., The Performance & Design of Alternating current Ma sons Ltd., London 1995. Clayton, A.E., Performance & Design of Direct current Machine Book society & Sri Isaac Pitman & sons Ltd., London 1995 	ding - Design of salien rs Estimation of air gap MMF - Design of field TOTAL: 45 PERIODS publishers Distribution ai & sons, 1993. ications, Third edition chines Isaac Pitman &

L	Т	Р	С
3	2	0	4

COURSE CATEGORY:

Program Core

PREAMBLE:

This course provides students with the knowledge of Microprocessors and Microcontroller. To solve real world problems in an efficient manner and this course also emphasis on architecture, Programming and system design used in various day to day gadgets.

PRE-REQUISITE COURSES:

Digital Electronics

RELATED COURSES:

Embedded System Design, Embedded Processors

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand the internal organization, addressing modes and instruction sets of 8085 processor.
- Familiar with the various functional units of 8051 microcontroller.
- Construct an embedded C and assembly language program by using 8051 Instruction sets and addressing modes.
- Understand the peripheral devices such as 8255, 8279, 8251, 8253, 8259 and 8237.
- Study the microcontroller based system design for various applications and advanced processors like PIC, ARM and ATMEGA.

COURSE OUTCOMES :

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Develop an ALP in 8085 microprocessor using the internal organization for the given specification	КЗ
CO2	Describe the architecture and functional block of 8051 microcontroller	K2
CO3	Develop an embedded C and ALP in 8051 microcontroller using the internal functional blocks for the given specification	K3
CO4	Explain the peripherals devices such as 8255, 8279, 8251, 8253, 8259 and 8237.	K2
CO5	Explain microcontroller applications and basic architecture of PIC, ARM and ATMEGA processors.	K2

CORR	ELAT		OF COs	WITH	POs A	ND P	SOs							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	H	М	M	L	М						Μ	L	H	М
CO2 CO3	<u>н</u> Н	M	L M	1	N 4						N /	N.4	<u>н</u> Н	M
CO3	H	M		L	M						М	M	H	M
CO5	H	M	L	L								M	H	M
COURSE CONTENT:														
UNIT I 8085 CPU 9+3														
8085 Architecture – Pin diagram-Memory interfacing – I/O interfacing- Timing Diagram- Instruction Set- Addressing modes – Assembly language programming- comparison of 8 bit (8085) and 16 bit (8086) processors.														
UNIT I	I 8	051 A	RCHITE	ECTUR	E									9+3
			nemory nterfacii											-serial
UNIT I	II 8	051 P	ROGRA	MMING	3									9+3
Addressing modes -instruction set -Assembly language programming and C Programming– Timer Counter Programming – Serial Communication Programming- Interrupt Programming.														
UNIT I	V P	ERIPI	HERAL	DEVIC	ES									10+3
			l Interfa 8251) -										olay Co	ntroller
			CONTR ESSOR	ROLLEF	r app	PLICA	TION	S & A	DVAN					8+3
	n - D		trol syst											
								то	TAL:	45+ 15	(Tutor	ials) =	60 PE	RIODS
TEXT E	BOOK	S:												
1.			Gaonl Edition,		•					Program	nming	and ap	plicatio	on with
2.	micro		d Ali N oller an Asia.											
 Mohamed Rafiquzzaman, Microprocessor and Microcomputer based system design, second edition, CRC press. 										ocompu	iter ba	ised sy	vstem	design,
REFERENCE BOOKS:														
REFE	RENC	E BO	OKS:											
	Kenr	neth J	OKS: Ayala, n, Penra						hitectu	ure Pro	gramm	ning an	d Appl	ication,

	URSE CODE: COURSE TITLE: DISCRETE TIME SIGNAL 1151EE114 PROCESSING									Г	Ρ	С			
COURSE CATEGORY: Program Core									3 (0	0	3			
COUR	SE CA	TEGO	ORY:	Progra	am Co	re									
oroces ransfo	sing	metho	ds a nnique	nd to s. It p	acqı rovide	uire k s stud	nowle	dge	of an	ction to alysis out diffe	of sys	stems	usir	ng 🗤	variou
PREREQUISITE COURSES: Transforms and Partial Differential Equations															
RELATED COURSES:															
Digital Control System															
COUR	SE EC		ΓΙΟΝΑ	L OB	JECT	IVES									
The ob	jective	es of th	ne cou	irse ar	e to,										
•	Learn	discr	ete Fo	ourier t	ransfo	orm an	d its p	propert	ties						
•				teristic			•	•							
•	-			to filte			U								
•	•			e word				•	roces	sor					
•	Study	the c	oncep	t of M	ultirate	e Sign	al pro	cessin	g & its	Applic	ations				
COUR	SE OI	лтсо	MES :												
Up	on the	succe	essful	compl	etion o	of the	cours	e, stuc	lents v	vill be a	ble to:				
		The successful completion of the course, students will be able to: Knowledge Level (Based on revised Bloom's Taxonomy)													
CO Nos.				С	ourse	e Outc	omes				K (E	Based	on r	revis	ed
	Ар				ourier	Tran		5		Fourier	K (E Blo	Based	on r	revis	ed
Nos.	Ap Tra	ansfor velop	m for t the D	te Fo the giv	ourier ven sig	Tran gnals.	sform	8 I	Fast		K (E Blo	Based	on r Tax	revis	ed
Nos. CO1	Ap Tra De fro	velop m give	m for t the D en spe the D	te Fo the giv igital li	ourier ven sig nfinite ions nfinite	Tran gnals. Impul Impul	sform se Re	& I spons	Fast se Filte	Fourier ers (IIR)	K (E Blo	Based	on r Tax K3	revis	ed
Nos. CO1 CO2	Ap Tra De fro De (FI Ap	velop welop m give velop R) fro ply th	m for t the D en spe the D m give ne ba	te Fo the giv igital li ecificat igital li en spe sic si	ourier ren sig nfinite ions nfinite cificat gnal	Tran gnals. Impul Impul ions proces	sform se Re se Re	& I spons spons conce	Fast se Filte se Filte	Fourier ers (IIR)	K (E Bio	Based	on r Tax K3 K3	revis	ed
Nos. CO1 CO2 CO3	Ap Tra De fro De (FI Ap Pro filto	velop m give velop R) fro ply th ocesso ers. plain	m for the D en spe the D m give ne ba or and the	te Fo the giv igital li crificat igital li en spe sic si sic si d solv	ourier ven sig nfinite ions nfinite cificat gnal e the s of	Tran gnals. Impul Impul ions proces finite Multii	sform se Re se Re ssing word	& I spons spons conce I lengt	Fast se Filte se Filte spts i th effe	Fourier ers (IIR) ers n DSP	K (E Bio	Based	on r Tax K3 K3 K3	revis	ed
Nos. CO1 CO2 CO3 CO4	Ap Tra De fro De (FI Ap Pro filto	velop m give velop R) fro ply th pcesso ers. plain ncepts	m for t the D en spe the D m give ne ba or and the s & its	te Fo the giv igital li ecificat igital li en spe sic si sic si d solv basics applic	ourier ren sig nfinite ions nfinite cificat gnal e the s of ations	Tran gnals. Impul ions proces finite Multii	sform se Re se Re ssing word	& I spons spons conce l lengt Signal	Fast se Filte se Filte spts i th effe	Fourier ers (IIR) ers n DSP ects on	K (E Bio	Based	K3 K3 K3 K3	revis	ed
Nos CO1 CO2 CO3 CO4 CO5 CORR COs	Ap Tra De fro De (Fl Ap Pro filto ELATI PO1	velop m give velop R) fro ply th pcesso ers. plain ncepts ON O PO2	m for t the D en spe the D m give ne ba or and the s & its F COs F COs	te Fo the giv igital li ecificat igital li en spe sic si d solv basics applic s WITI PO4	ourier ren sig nfinite ions nfinite cificat gnal e the s of ations H POs PO5	Tran gnals. Impul ions proces finite Multin s. AND	sform se Re se Re ssing word ate	s spons conce l lengi Signal s	Fast se Filte se Filte spts i th effe Proo	Fourier ers (IIR) ers n DSP ects on		Based Soom's	on r Tax K3 K3 K3 K3 K2 2 PS	SO1	sed my)
Nos. CO1 CO2 CO3 CO4 CO5 CO7 CO5 CO7 CO5 CO7	Ap Tra De fro (FI Ap Pro filto co ELATI PO1 H	velop m give velop R) fro ply th ocesso ers. plain ncepts ON O H	m for the D the D the D m give ne ba or and the s & its F CO M	te Fc the giv igital li ecificat igital li en spe sic si d solv basics applic s WITI PO4 M	ourier ren sig nfinite ions nfinite cificat gnal e the s of ations H POs H	Tran gnals. Impul ions proces finite Multin s. AND	sform se Re se Re ssing word ate	s spons conce l lengi Signal s	Fast se Filte se Filte spts i th effe Proo	Fourier ers (IIR) ers n DSP ects on cessing		Based Soom's	on r Tax K3 K3 K3 K3 K2 2 PS	SO1 H	sed my)
Nos. CO1 CO2 CO3 CO4 CO5 CO7 CO8 CO1 CO2	Ap Tra fro De fro (Fl Ap Pro filto ELATI PO1 H H	velop m give velop R) fro ply th ocesso ers. plain ncepts ON O PO2 H H	m for the D en speet the D m give ne ba or and the s & its F CO M M M	te Fc the giv igital li ecificat igital li en spe sic si d solv basics applic s WITI PO4 M M	ourier ren sig nfinite ions nfinite cificat gnal e the s of ations H POs H H H	Tran gnals. Impul ions proces finite Multin s. AND	sform se Re se Re ssing word ate	s spons conce l lengi Signal s	Fast se Filte se Filte spts i th effe Proo	Fourier ers (IIR) ers n DSP ects on cessing		Based Soom's	on r Tax K3 K3 K3 K3 K2 2 PS	SO1 H H	sed my)
Nos. CO1 CO2 CO3 CO4 CO5 CO7 CO5 CO7 CO5 CO7	Ap Tra De fro (FI Ap Pro filto co ELATI PO1 H	velop m give velop R) fro ply th ocesso ers. plain ncepts ON O H	m for the D the D the D m give ne ba or and the s & its F CO M	te Fc the giv igital li ecificat igital li en spe sic si d solv basics applic s WITI PO4 M	ourier ren sig nfinite ions nfinite cificat gnal e the s of ations H POs H	Tran gnals. Impul ions proces finite Multin s. AND	sform se Re se Re ssing word ate	s spons conce l lengi Signal s	Fast se Filte se Filte spts i th effe Proo	Fourier ers (IIR) ers n DSP ects on cessing		Based Soom's	on r Tax K3 K3 K3 K3 K2 2 PS	SO1 H	sed my)

Radix-2 FFT algorithms – Decimation in Time – Decimation in Frequency algorithms – Use FFT algorithms in Linear Filtering and correlation UNIT II IIR FILTER DESIGN Structures of IIR – Analog filter design – Discrete time IIR filter from analog filter – IIR filt design by using Impulse Invariance, Bilinear transformation – IIR Filter structures Approximation of derivatives – (LPF, HPF, BPF, BRF) filter design using frequency translation. UNIT III FIR FILTER DESIGN Structures of FIR – Linear phase FIR filter - Filter design using windowing technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Multirat structures. UNIT IV FINTE WORDLENGTH EFFECTS & DSP PROCESSOR Finite word length effects: Quantization - Truncation and Rounding errors - Quantization noise coefficient quantization error - Product quantization error - Overflow error - limit cycloscial taxins, scaling, Introduction to DSP architecture - Harvard architecture - Harvard architecture - Application State Structures and Coding - Musical Sound Processing - Digital Audio s	COURS	E CONTENT:							
Radix-2 FFT algorithms – Decimation in Time – Decimation in Frequency algorithms –Use FFT algorithms in Linear Filtering and correlation UNIT II IIR FILTER DESIGN Structures of IIR – Analog filter design – Discrete time IIR filter from analog filter – IIR filt design by using Impulse Invariance, Bilinear transformation – IIR Filter structures Approximation of derivatives – (LPF, HPF, BPF, BRF) filter design using frequency translation. UNIT III FIR FILTER DESIGN Structures of FIR – Linear phase FIR filter - Filter design using windowing technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique FIR Filter structures. UNIT IV FINITE WORDLENGTH EFFECTS & DSP PROCESSOR Finite word length effects: Quantization - Truncation and Rounding errors - Quantization noise coefficient quantization error – Product quantization error – Overflow error – limit cyo socillations, scaling. Introduction to DSP architecture – Harvard architecture - Dedicated MA unit - Multiple ALUs - Advanced addressing modes – Pipelining - Overview of instruction set TMS320C5X and C54X. UNIT V MULTIRATE SIGNAL PROCESSING & APPLICATIONS Multirate signal processing: Decimation, Interpolation - Sampling rate conversion by a rational factor – Application - Sub band coding - Musical Sound Processors - Architecture, Programmir and Applications", 4th edition, Pearson Education / Prentice Hall, 2007. 2. B. Venkataramani, M. Bhaskar, "Digital Signal Processors, Architecture, Programmir and Applications", 2nd edition, Tata McGraw-Hill Education, 2002. REFERENCE BOOKS: 1	UNIT I	DISCRETE FOURIER TRANSFORMS	9						
Structures of IIR – Analog filter design – Discrete time IIR filter from analog filter – IIR filt design by using Impulse Invariance, Bilinear transformation - IIR Filter structures Approximation of derivatives – (LPF, HPF, BPF, BRF) filter design using frequency translation. UNIT III FIR FILTER DESIGN Structures of FIR – Linear phase FIR filter - Filter design using windowing technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique (Rectangular Window, Hamming Window, Hamming Window, Hamming Window) - Frequency sampling technique (Rectangular Window, Hamming W	Introduction & Properties of DFT – Linear & Circular Convolution Methods, FFT algorithms – Radix-2 FFT algorithms – Decimation in Time – Decimation in Frequency algorithms –Use of FFT algorithms in Linear Filtering and correlation								
design by using Impulse Invariance, Bilinear transformation - IIR Filter structures Approximation of derivatives – (LPF, HPF, BPF, BRF) filter design using frequency translation. UNIT III FIR FILTER DESIGN Structures of FIR – Linear phase FIR filter - Filter design using windowing technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique FIR Filter structures. UNIT IV FINITE WORDLENGTH EFFECTS & DSP PROCESSOR Finite word length effects: Quantization - Truncation and Rounding errors - Quantization noise coefficient quantization error - Product quantization error - Overflow error - limit cyc oscillations, scaling. Introduction to DSP architecture - Harvard architecture - Dedicated MA unit - Multiple ALUS - Advanced addressing modes – Pipelining - Overview of instruction set TMS320C5X and C54X. UNIT V MULTIRATE SIGNAL PROCESSING & APPLICATIONS Multiple ALUS - Advanced addressing modes – Pipelining - Overview of instruction set TMS320C5X and C54X. UNIT V MULTIRATE SIGNAL PROCESSING & APPLICATIONS Multiple ALUS - Advanced addressing modes – Pipelining - Digital Audio sampling rat conversion - Sub band coding - Musical Sound Processing - Digital Audio sampling rat conversion - Sub band coding - Musical Sound Processors: D - Digital Audio sampling rat conversion - Oversampling A/D &D/A. TEXT BOOKS: 1 1. John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principle Algorithms & Applications", 4th edition, Pearson Education / Prentice Hall, 2007. 2. B. Venkatarama	UNIT II	IIR FILTER DESIGN	9						
Structures of FIR – Linear phase FIR filter - Filter design using windowing technique (Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique FIR Filter structures. UNIT IV FINITE WORDLENGTH EFFECTS & DSP PROCESSOR Finite word length effects: Quantization - Truncation and Rounding errors - Quantization noise coefficient quantization error – Product quantization error - Overflow error – limit cyc oscillations, scaling. Introduction to DSP architecture – Harvard architecture - Dedicated MA unit - Multiple ALUs - Advanced addressing modes – Pipelining - Overview of instruction set TMS320C5X and C54X. UNIT V MULTIRATE SIGNAL PROCESSING & APPLICATIONS Multirate signal processing: Decimation, Interpolation - Sampling rate conversion by a rational factor – Application - Sub band coding - Musical Sound Processing - Digital Audio sampling rat conversion - Oversampling A/D &D/A. TOTAL: 45 PERIOD TEXT BOOKS: John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principle Algorithms & Applications", 4th edition, Pearson Education / Prentice Hall, 2007. B. Venkataramani, M. Bhaskar, "Digital Signal Processors: Architecture, Programmin and Applications", 2nd edition, Tata McGraw-Hill Education, 2002. REFERENCE BOOKS: S.Salivahanan, A.Vallavaraj, C Gnanapriya, "Discrete Signal Processing", 2nd edition Pearson Education / Prentice Hall, 2002. Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata M Graw Hill, 2007. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8 Indian Reprint, Pearson, 2004. 	design	by using Impulse Invariance, Bilinear transformation - II	R Filter structures -						
(Rectangular Window, Hamming Window, Hanning Window) - Frequency sampling technique FIR Filter structures. UNIT IV FINITE WORDLENGTH EFFECTS & DSP PROCESSOR Finite word length effects: Quantization - Truncation and Rounding errors - Quantization noise coefficient quantization error - Product quantization error - Overlow error - limit cyc oscillations, scaling, Introduction to DSP architecture - Harvard architecture - Dedicated MA unit - Multiple ALUS - Advanced addressing modes - Pipelining - Overview of instruction set TMS320C5X and C54X. UNIT V MULTIRATE SIGNAL PROCESSING & APPLICATIONS Multirate signal processing: Decimation, Interpolation - Sampling rate conversion by a rational factor - Application - Sub band coding - Musical Sound Processing - Digital Audio sampling rate conversion - Oversampling A/D &D/A. TEXT BOOKS: 1. John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing - Principle Algorithms & Applications", 4th edition, Pearson Education / Prentice Hall, 2007. 2. B. Venkataramani, M. Bhaskar, "Digital Signal Processors: Architecture, Programmir and Applications", 2nd edition, Tata McGraw-Hill Education, 2002. REFERENCE BOOKS: 1. 1. S.Salivahanan, A.Vallavaraj, C Gnanapriya, "Discrete Signal Processing", 2nd edition Pearson Education / Prentice Hall, 2007. 2. Emmanuel CIfeachor, & Barrie.W.Jervis, "Digital Signal Processing", 2nd edition Pearson Education / Prentice Hall, 2002. 3. Sanjit K. Mitra, "Digital Signal Processing - A Computer Based Approach", Tata N Graw Hill, 2007. 4. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discr	UNIT II	FIR FILTER DESIGN	9						
Finite word length effects: Quantization- Truncation and Rounding errors - Quantization noise coefficient quantization error - Product quantization error - Overflow error - limit cycloscillations, scaling. Introduction to DSP architecture - Harvard architecture - Dedicated MA unit - Multiple ALUS - Advanced addressing modes - Pipelining - Overview of instruction set TMS320C5X and C54X. UNIT V MULTIRATE SIGNAL PROCESSING & APPLICATIONS Multirate signal processing: Decimation, Interpolation - Sampling rate conversion by a rational factor - Application - Sub band coding - Musical Sound Processing - Digital Audio sampling rate conversion - Oversampling A/D &D/A. TOTAL: 45 PERIOD TEXT BOOKS: 1. John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing - Principle Algorithms & Applications", 4th edition, Pearson Education / Prentice Hall, 2007. 2. B. Venkataramani, M. Bhaskar, "Digital Signal Processors: Architecture, Programmir and Applications", 2nd edition, 7ata McGraw-Hill Education, 2002. 1. S.Salivahanan, A.Vallavaraj, C Gnanapriya, "Discrete Signal Processing", 2nd edition Pearson Education / Prentice Hall, 2002. 3. Sanjit K. Mitra, "Digital Signal Processing - A Computer Based Approach", Tata M Graw Hill, 2007. 4. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8 Indian Reprint, Pearson, 2004. ONLINE RESOURCES: ONLINE RESOURCES:	(Rectar	gular Window, Hamming Window, Hanning Window) - Frequenc							
coefficient quantization error – Product quantization error - Overflow error – limit cycloscillations, scaling. Introduction to DSP architecture – Harvard architecture - Dedicated MA unit - Multiple ALUS - Advanced addressing modes – Pipelining - Overview of instruction set TMS320C5X and C54X. UNIT V MULTIRATE SIGNAL PROCESSING & APPLICATIONS Multirate signal processing: Decimation, Interpolation - Sampling rate conversion by a rational factor – Application - Sub band coding - Musical Sound Processing - Digital Audio sampling rate conversion - Oversampling A/D &D/A. TOTAL: 45 PERIOD TEXT BOOKS: 1. John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principle Algorithms & Applications", 4th edition, Pearson Education / Prentice Hall, 2007. 2. B. Venkataramani, M. Bhaskar, "Digital Signal Processors: Architecture, Programmir and Applications", 2nd edition, Tata McGraw-Hill Education, 2002. REFERENCE BOOKS: 1. S.Salivahanan, A.Vallavaraj, C Gnanapriya, "Discrete Signal Processing", Ta McGraw-hill Publication, 2002. 2. Emmanuel Clfeachor, & Barrie.W.Jervis, "Digital Signal Processing", 2nd edition Pearson Education / Prentice Hall, 2002. 3. Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata M Graw Hill, 2007. 4. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8 Indian Reprint, Pearson, 2004. ONLINE RESOURCES:	UNIT IV	FINITE WORDLENGTH EFFECTS & DSP PROCESSOR	9						
Multirate signal processing: Decimation, Interpolation - Sampling rate conversion by a rational factor – Application - Sub band coding - Musical Sound Processing - Digital Audio sampling rate conversion - Oversampling A/D &D/A. TOTAL: 45 PERIOD TEXT BOOKS: 1. John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principle Algorithms & Applications", 4th edition, Pearson Education / Prentice Hall, 2007. 2. B. Venkataramani, M. Bhaskar, "Digital Signal Processors: Architecture, Programmir and Applications", 2nd edition, Tata McGraw-Hill Education, 2002. REFERENCE BOOKS: 1. 1. S.Salivahanan, A.Vallavaraj, C Gnanapriya, "Discrete Signal Processing", Ta McGraw-hill Publication, 2002. 2. Emmanuel Clfeachor, & Barrie.W.Jervis, "Digital Signal Processing", 2nd edition Pearson Education / Prentice Hall, 2002. 3. Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata M Graw Hill, 2007. 4. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8 Indian Reprint, Pearson, 2004. ONLINE RESOURCES: Indian Reprint, Pearson, 2004.	Finite word length effects: Quantization- Truncation and Rounding errors - Quantization noise – coefficient quantization error – Product quantization error - Overflow error – limit cycle oscillations, scaling. Introduction to DSP architecture – Harvard architecture - Dedicated MAC unit - Multiple ALUs - Advanced addressing modes – Pipelining - Overview of instruction set of TMS320C5X and C54X.								
 factor – Application - Sub band coding - Musical Sound Processing - Digital Audio sampling rationversion - Oversampling A/D &D/A. TOTAL: 45 PERIOD TEXT BOOKS: John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principle Algorithms & Applications", 4th edition, Pearson Education / Prentice Hall, 2007. B. Venkataramani, M. Bhaskar, "Digital Signal Processors: Architecture, Programmir and Applications", 2nd edition, Tata McGraw-Hill Education, 2002. REFERENCE BOOKS: S.Salivahanan, A.Vallavaraj, C Gnanapriya, "Discrete Signal Processing", Ta McGraw-hill Publication, 2002. Emmanuel CIfeachor, & Barrie.W.Jervis, "Digital Signal Processing", 2nd edition Pearson Education / Prentice Hall, 2002. Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata M Graw Hill, 2007. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8 Indian Reprint, Pearson, 2004. ONLINE RESOURCES: 	UNIT V	MULTIRATE SIGNAL PROCESSING & APPLICATIONS	9						
 TEXT BOOKS: 1. John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principle Algorithms & Applications", 4th edition, Pearson Education / Prentice Hall, 2007. 2. B. Venkataramani, M. Bhaskar, "Digital Signal Processors: Architecture, Programmir and Applications", 2nd edition, Tata McGraw-Hill Education, 2002. REFERENCE BOOKS: S.Salivahanan, A.Vallavaraj, C Gnanapriya, "Discrete Signal Processing", Ta McGraw-hill Publication, 2002. Emmanuel CIfeachor, & Barrie.W.Jervis, "Digital Signal Processing", 2nd editio Pearson Education / Prentice Hall, 2002. Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata N Graw Hill, 2007. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8 Indian Reprint, Pearson, 2004. 	factor -	Application - Sub band coding - Musical Sound Processing - Digi							
 John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principle Algorithms & Applications", 4th edition, Pearson Education / Prentice Hall, 2007. B. Venkataramani, M. Bhaskar, "Digital Signal Processors: Architecture, Programmir and Applications", 2nd edition, Tata McGraw-Hill Education, 2002. REFERENCE BOOKS: S.Salivahanan, A.Vallavaraj, C Gnanapriya, "Discrete Signal Processing", Ta McGraw-hill Publication, 2002. Emmanuel CIfeachor, & Barrie.W.Jervis, "Digital Signal Processing", 2nd editio Pearson Education / Prentice Hall, 2002. Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata M Graw Hill, 2007. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8 Indian Reprint, Pearson, 2004. 			TOTAL: 45 PERIODS						
 Algorithms & Applications", 4th edition, Pearson Education / Prentice Hall, 2007. 2. B. Venkataramani, M. Bhaskar, "Digital Signal Processors: Architecture, Programmir and Applications", 2nd edition, Tata McGraw-Hill Education, 2002. REFERENCE BOOKS: S.Salivahanan, A.Vallavaraj, C Gnanapriya, "Discrete Signal Processing", Ta McGraw-hill Publication, 2002. 2. Emmanuel CIfeachor, & Barrie.W.Jervis, "Digital Signal Processing", 2nd editio Pearson Education / Prentice Hall, 2002. 3. Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata M Graw Hill, 2007. 4. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8 Indian Reprint, Pearson, 2004. 	TEXT B	DOKS:							
 and Applications", 2nd edition, Tata McGraw-Hill Education, 2002. REFERENCE BOOKS: S.Salivahanan, A.Vallavaraj, C Gnanapriya, "Discrete Signal Processing", Ta McGraw-hill Publication, 2002. Emmanuel CIfeachor, & Barrie.W.Jervis, "Digital Signal Processing", 2nd editio Pearson Education / Prentice Hall, 2002. Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata M Graw Hill, 2007. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8 Indian Reprint, Pearson, 2004. ONLINE RESOURCES: 			U						
 S.Salivahanan, A.Vallavaraj, C Gnanapriya, "Discrete Signal Processing", Ta McGraw-hill Publication, 2002. Emmanuel CIfeachor, & Barrie.W.Jervis, "Digital Signal Processing", 2nd editio Pearson Education / Prentice Hall, 2002. Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata M Graw Hill, 2007. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8 Indian Reprint, Pearson, 2004. 									
 McGraw-hill Publication, 2002. 2. Emmanuel CIfeachor, & Barrie.W.Jervis, "Digital Signal Processing", 2nd edition Pearson Education / Prentice Hall, 2002. 3. Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata M Graw Hill, 2007. 4. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8 Indian Reprint, Pearson, 2004. 	REFER	ENCE BOOKS:							
 Pearson Education / Prentice Hall, 2002. 3. Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata M Graw Hill, 2007. 4. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8 Indian Reprint, Pearson, 2004. ONLINE RESOURCES:			nal Processing", Tata						
 Graw Hill, 2007. 4. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8 Indian Reprint, Pearson, 2004. ONLINE RESOURCES:			cessing", 2nd edition,						
Indian Reprint, Pearson, 2004. ONLINE RESOURCES:			d Approach", Tata Mc						
		••	Signal Processing", 8th						
	ONLIN	RESOURCES:							
1. <u>nttps://nptei.ac.in/courses/108106098</u>	1.	https://nptel.ac.in/courses/108106098							

COURSE CODE: 1151EE115

COURSE TITLE: LINEAR INTEGRATED CIRCUITS

Т	Ρ	С
0	0	3

L

3

COURSE CATEGORY: Program Core

PREAMBLE: Linear Integrated Circuits introduces the basic concepts of Integrated circuits along with fundamental concepts of electronic circuits like operational amplifiers, rectifiers & timers.

PREREQUISITE COURSES:

Basic Electronics Engineering, Electronic Devices and Circuits

RELATED COURSES:

VLSI Design, Analog Communication Systems, Power System Operation and Control, Renewable Energy Sources.

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Familiar in the operational amplifier principle, analysis, design with its applications.
- Illustrate the linear and nonlinear applications of operational amplifiers.
- Understand the operating principles of PLL.
- Familiar in the operation of ADC, DAC and its classifications.
- Understand the applications of specific ICs.

COURSE OUTCOMES :

CO Nos.				Co	de	evel of omain (evised	(Based	on								
CO1		Construct the electronic circuits using Operational Amplifier for the given specifications.											КЗ			
CO2		Explain the linear and nonlinear applications of Operationa Amplifier including comparators and waveform generators.										K2				
CO3		Summarize the operating principle of PLL and its applications.										ł	<2			
CO4	Illust DAC		he co	nstruc	tion, t	types	and o	operat	ion of	ADC /	/	K2				
CO5			e app egulato				al fur	iction	IC's s	such as	5	ł	<2			
CORR	ELAT		F CO	s WITI	H POs	S AND	PSO	5								
COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	Н	Н	М	L	L								Н			
CO2	Н	М	М	М	L								Н			
CO3	Н	М	М	М	L								Н			
CO4	Н	М	М	М	L						L		Н			
CO5	Н	Μ	Μ		L						L	М	Н	М		

COURSE	COURSE CONTENT:								
UNIT I	INTRODUCTION TO OPERATIONAL AMPLIFIERS	12							
source - a Amp - Bl AC Chara	BJT differential amplifier - Concept of CMRR - methods to improve CMRR - constant current source - active load - current mirror - Darlington pair differential input impedance - The Ideal Op Amp - Block diagram representation of Op Amp Voltage Transfer Curve of Op Amp - DC and AC Characteristics of an Op Amp - Frequency Response - Slew Rate. Active Filters: Low pass, High Pass and band pass filters - Switched capacitor filter								
UNIT II	APPLICATIONS OF OPERATIONAL AMPLIFIERS	9							
to current Non Line Compara	Linear Applications: Inverting and Non inverting Amplifiers – Differentiator – Integrator - Voltage to current converter - Instrumentation amplifier Non Linear Applications: Clippers and Clampers - Precision rectifier - Log and Antilog amplifiers Comparators and Wave form Generators: Comparator - Regenerative comparator – Astable Multivibrators – Monstable Multivibrators - Triangular wave generator - Sine wave generators.								
UNIT III	PLL	6							
Voltage (synthesiz	Controlled Oscillator- Closed loop analysis of PLL – PLL App ers.	lications - Frequency							
UNIT IV	ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS	9							
converter	Analog switches - High speed sample and hold circuits and sample and hold ICs - Types of D/A converter - Current driven DAC - Switches for DAC- A/D converter Flash - Single slope - Dual slope - Successive approximation - Delta Sigma Modulation - Voltage to Time converters.								
UNIT V	SPECIAL FUNCTION ICs	9							
amp - lin	er: Astable and Monostable Multivibrators, Schmitt trigger Voltage ear and switched mode types - Frequency to Voltage converter aplifiers - ECG using op-amp.								
		TOTAL: 45 PERIODS							
TEXT BO	OKS:								
	. Roy Choudhry and Shail B. Jain, "Linear Integrated Circuits"- (d. ternational Pvt. Ltd, 2011.	/e), New Age							
	R. Gayakwad, Op-amps and Linear Integrated Circuits (d/e), PH ulse Circuits (d/e), PHI, 2009.	ID. A. Bell, Solid state							
REFERE	NCE BOOKS:								
	. Franco, Design with Operational Amplifiers and Analog Integrat 003.	ed Circuits (c/e) TMH,							
	. F. Coughlin & F. F. Driscoll: Operational Amplifiers and Line HI, 1996.	ar Integrated circuits,							
	. A. Bell: Solid State pulse circuits, (d/e), PHI. Milman Grav cGraw Hill, 1999.	el: Micro-Electronics,							
ONLINE	RESOURCES:								
1. <u>ht</u>	tps://nptel.ac.in/courses/108105158								

COURSE CODE:
1151EE116

COURSE TITLE: NUMERICAL METHODS

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Program Core

PREAMBLE: This course provides an introduction to the basic concepts and techniques of numerical solution of algebraic equation, system of algebraic equation, numerical solution of differentiation, integration methods.

PREREQUISITE COURSES: Engineering Mathematics-I

RELATED COURSES: Power system Analysis, power system operation & control and allied subjects related numerical interpolation and transcendental equation.

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Develop the mathematical skills of the students in the areas of numerical methods.
- To teach theory and applications of numerical methods in a large number of engineering subjects which require solutions of linear systems, finding eigen values, eigenvectors, interpolation and applications, solving ODEs, PDEs.

COURSE OUTCOMES :

CO3

CO4

CO5

н

Н

Н

Μ

Μ

L

Μ

Μ

Μ

Μ

L

L

Upon the successful completion of the course, students will be able to:

CO Nos		Course Outcomes											f learn (Baseo Bloor nomy)	d on n's	
CO1	e	Apply numerical methods to find our solution of algebraic equations using different methods under different conditions, and numerical solution of system of algebraic equations.											K3		
CO2		Apply various interpolation methods and finite differenc concepts.									e	КЗ			
CO3		Solve numerical differentiation and integration whenever and wherever routine methods are not applicable.									r	К3			
CO4		Solve on the ordinary differential equations using different methods through the theory of finite differences.									K3				
CO5 Solve numerically on the partial differential equations using different methods through the theory of finite differences.										K3					
CORRE	ELATI	ON OF	COs W	ITH PO	Os A	ND PS	SOs								
COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	
CO1	Н	L								L		L	Н	L	
CO2	Н	Μ	Μ	L	L					L			Н	L	

L

L

Η

Н

Н

L

L

L

	SOLUTION OF TRANSCENDENTAL EQUATIONS AND EIGENVALUE PROBLEMS	9
by Gauss Gauss-Se	of equations – iteration method – Newton-Raphson Method – session elimination and Gauss-Jordan method – iterative method eidel methods – inverse of a matrix by Gauss-Jordon method – x by power method	s – Gauss-Jacobi and
UNIT II	INTERPOLATION	9
backward	an interpolating polynomials – interpolation with equal intervals - I difference formulae – central difference formulae – interpolation differences – Newton's divided difference formula.	- Newton's forward and n with unequal intervals
UNIT III	NUMERICAL DIFFERENTIATION AND INTEGRATION	9
1/3 and 3	ation using interpolation formulae – numerical integration by trap 3/8 rules – Romberg's method – two and three point Gaussian tegrals using trapezoidal and Simpson's rules.	
UNIT IV	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS	9
order Ru	ep methods – Taylor series method – Euler method for first on nge-Kutta method for solving first and second order equations and Adam's predictor and corrector methods	
UNIT V	NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS	9
Clossifier		
solution c	tion of second order PDE - finite-difference approximations to pa ff Laplace and Poisson equations – solution of one-dimensional ff two-dimensional heat equation - solution of wave equation	
solution c	f Laplace and Poisson equations – solution of one-dimensional	
solution c solution c	f Laplace and Poisson equations – solution of one-dimensional f two-dimensional heat equation - solution of wave equation	heat equation –
solution c solution c FEXT BOO 1. S. Pr	 f Laplace and Poisson equations – solution of one-dimensional f two-dimensional heat equation - solution of wave equation DKS: S. Sastry, Introductory Methods of Numerical Analysis, 4th rivate Limited, New Delhi, 2007. 	heat equation – TOTAL: 45 PERIODS edition, PHI Learning
solution c solution c TEXT BOO 1. S. Pi 2. B. ec	 f Laplace and Poisson equations – solution of one-dimensional f two-dimensional heat equation - solution of wave equation DKS: S. Sastry, Introductory Methods of Numerical Analysis, 4th rivate Limited, New Delhi, 2007. S. Grewal and J.S. Grewal, Numerical Methods in Enginee dition, Khanna Publishers, New Delhi, 2004. 	heat equation – TOTAL: 45 PERIODS edition, PHI Learning ring and Science, 6th
solution c solution c TEXT BOO 1. S. Pr 2. B. ec 3. Jc Pl	 If Laplace and Poisson equations – solution of one-dimensional of two-dimensional heat equation - solution of wave equation DKS: S. Sastry, Introductory Methods of Numerical Analysis, 4th rivate Limited, New Delhi, 2007. S. Grewal and J.S. Grewal, Numerical Methods in Enginee dition, Khanna Publishers, New Delhi, 2004. Dhn H. Mathews and Kurtis D. Fink, Numerical Methods using HI Learning Private Limited, New Delhi, 2007. 	heat equation – TOTAL: 45 PERIODS edition, PHI Learning ring and Science, 6th MATLAB, 4th edition,
Solution c solution c TEXT BOO 1. S. Pr 2. B. ec 3. Jc Pl 4. C.	 f Laplace and Poisson equations – solution of one-dimensional f two-dimensional heat equation - solution of wave equation DKS: S. Sastry, Introductory Methods of Numerical Analysis, 4th ivate Limited, New Delhi, 2007. S. Grewal and J.S. Grewal, Numerical Methods in Enginee dition, Khanna Publishers, New Delhi, 2004. whn H. Mathews and Kurtis D. Fink, Numerical Methods using 	heat equation – TOTAL: 45 PERIODS edition, PHI Learning ring and Science, 6th MATLAB, 4th edition,
solution c solution c TEXT BOO 1. S. Pl 2. B. ec 3. Jo Pl 4. C. Ec	 f Laplace and Poisson equations – solution of one-dimensional f two-dimensional heat equation - solution of wave equation DKS: S. Sastry, Introductory Methods of Numerical Analysis, 4th rivate Limited, New Delhi, 2007. S. Grewal and J.S. Grewal, Numerical Methods in Enginee dition, Khanna Publishers, New Delhi, 2004. ohn H. Mathews and Kurtis D. Fink, Numerical Methods using HI Learning Private Limited, New Delhi, 2007. F. Gerald and P.O. Wheatley, Applied Numerical Analysis, 	heat equation – TOTAL: 45 PERIODS edition, PHI Learning ring and Science, 6th MATLAB, 4th edition,
Solution c solution c fEXT BOO 1. S. Pr 2. B. ec 3. Jc Pl 4. C. Ec REFERE 1. A.	 If Laplace and Poisson equations – solution of one-dimensional of two-dimensional heat equation - solution of wave equation DKS: S. Sastry, Introductory Methods of Numerical Analysis, 4th tivate Limited, New Delhi, 2007. S. Grewal and J.S. Grewal, Numerical Methods in Enginee dition, Khanna Publishers, New Delhi, 2004. Dhn H. Mathews and Kurtis D. Fink, Numerical Methods using HI Learning Private Limited, New Delhi, 2007. F. Gerald and P.O. Wheatley, Applied Numerical Analysis, ducation, Asia, New Delhi, 2006. 	heat equation – TOTAL: 45 PERIODS edition, PHI Learning ring and Science, 6th MATLAB, 4th edition, 6th edition, Pearson
Solution c solution c TEXT BOO 1. S. Pr 2. B. ec 3. Jc Pl 4. C. Ec REFERE 1. A. In 2. Ke	 f Laplace and Poisson equations – solution of one-dimensional f two-dimensional heat equation - solution of wave equation DKS: S. Sastry, Introductory Methods of Numerical Analysis, 4th ivate Limited, New Delhi, 2007. S. Grewal and J.S. Grewal, Numerical Methods in Enginee dition, Khanna Publishers, New Delhi, 2004. ohn H. Mathews and Kurtis D. Fink, Numerical Methods using HI Learning Private Limited, New Delhi, 2007. F. Gerald and P.O. Wheatley, Applied Numerical Analysis, ducation, Asia, New Delhi, 2006. NCE BOOKS: K. Ray and K.M.Burchandi, Intel Microprocessors Architect 	heat equation – TOTAL: 45 PERIODS edition, PHI Learning ring and Science, 6th MATLAB, 4th edition, 6th edition, Pearson ure Programming and nming and Application,

INTEGRATED COURSE

COURSE CODE:
1151EE201

COURSE TITLE: ELECTROMAGNETIC FIELDS

L	Т	Ρ	С
2	0	2	3

COURSE CATEGORY: Program Core

PREAMBLE : The purpose of this course is to provide students with an introduction to the fundamentals of electrostatics, magneto statics, and electromagnetic waves.

PREREQUISITE COURSES: Engineering Physics

RELATED COURSES: AC Machines, Special Electrical Machines

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand the fundamental nature of static electric fields, potential, flux, charge densities, static magnetic fields, stored energy and boundary conditions.
- Impart Knowledge on the Basic laws that are governing the electromagnetic fields.
- Introduce the concepts of electromagnetic waves and its sources

COURSE OUTCOMES :

CO					•			,			Know	ladga		(Paca)	don		
Nos					Cours	se Out	comes	5				-	Level om's T	•			
1403	•	_				:					164130		0111 3 1		y)		
CO1	1	Expl field		bout e	lectros	statics	and so	urces	of elect	ric		K2					
CO2	/	App stud		e know	ledge o	of elect	trostati	cs for (dielectr	ic			K3				
CO3		Explain about magnetostatics and sources of K2															
CO4	1	Make use of Finite Element Method to solve field K3															
CO5	5	Explain about Electromagnetic waves in in free space, lossy and lossless dielectrics and their K2 importance															
CORI	REL	ATI	ON O	F COs	s WITH	l POs	and f	SOs									
COs	PC)1 F	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	H	1	Н	L		М								Н			
CO2	H	1	Н	L		М								Н			
CO3	T	1	Н	L		М								Н			
CO4	T	ł	Н	L										Н			
CO5	H	1	Н	L										Н			
COU	RSE	CO	NTE	NT:													
UNIT	Ι	ELE	ECTR	OSTA	TICS-I										9		
Diver	Sources and effects of electromagnetic fields – Coordinate Systems – Vector fields –Gradient, Divergence, Curl – theorems and applications - Coulomb's Law – Electric field intensity – Field due to discrete and continuous charges – Gauss's law and applications.																

UNIT II	ELECTROSTATICS-II	9
Utilization Dielectric	ootential – Electric field and equipotential plots, Uniform an factor – Electric field in free space, conductors, dielectrics - D strength - Electric field in multiple dielectrics – Boundary con equations - Applications.	Dielectric polarization -
UNIT III	MAGNETOSTATICS	9
straight co space, co	orce, magnetic field intensity (H) – Biot–Savart's Law - Ampere's onductors - circular loop, infinite sheet of current - Magnetic flux onductor - magnetic materials – Magnetization, Magnetic field or conditions - Poisson's Equation - Applications	density (B) – B in free
	ELECTRODYNAMIC FIELDS AND SOLUTION OF FIELD EQUATIONS (FEM)	9
Maxwell's	Circuits - Faraday's law – Transformer and motional EMF – Is equations (differential and integral form) – Relation between Applications.	
UNIT V	ELECTROMAGNETIC WAVES	9
impedanc	agnetic wave generation and equations – Wave paramete ce, propagation constant – Waves in free space, lossy and rs - skin depth - Poynting vector, Application	
		TOTAL: 60 PERIODS
EXPERIM	IENTS:	
1. Ana	lyzing flux distribution in core and shell type transformers	
2. Ana	lyzing flux distribution of motor	
3. Ana	lyzing current distribution of generator	
4. Cou	lombs law with two charged objects	
5. Elec	tromagnetic induction and charged particle in magnetic field	
TEXT BO	OKS:	
	athew N. O. Sadiku, 'Principles of Electromagnetics', 4 th Edit ess In3.First India edition, 2009.	tion, Oxford University
	shutosh Pramanik, 'Electromagnetism – Theory and Applica ivate Limited, New Delhi, Second Edition-2009.	ations', PHI Learning
	A. Gangadhar, P.M. Ramanathan ' Electromagnetic Field Theo nd wave propagation', 16th Edition, Khanna Publications, 2007.	ry (including Antennas
	NCE BOOKS:	
0 2. W	pseph. A.Edminister, 'Schaum's Outline of Electromagnetics, Thutline Series), Tata McGraw Hill, 2010 illiam H. Hayt and John 1. Buck, 'Engineering Electromagnetics evised edition, 2011.	
3. Kr Ec	aus and Fleish, 'Electromagnetics with Applications', McG ditions, Fifth Edition, 2010.	
4. D.	K. Cheng, Field and Wave Electromagnetics, Addison-Wesley,	1992

LABORATORY COURSES

COURSE CODE: 1151EE301

COURSE TITLE: CIRCUIT ANALYSIS LAB

L	Т	Р	С
0	0	2	1

COURSE CATEGORY: Program Core

PREAMBLE:

This course aims to make the students verify network laws and theorems practically and also helps to understand circuits with three phase, resonance and transients

PREREQUISITE COURSES:

Basic Electrical & Electronics Engineering Lab

RELATED COURSES:

Control Systems Lab

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Provide the verification of basic network laws and theorems
- Analyze circuits involving three phase, resonance and transients.
- Understand the importance of two port network parameters.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Execute basic circuit laws and network theorems	K3, S2
CO2	Build the two port networks	K3, S2
CO3	Demonstrate the use of CRO/DSO for measurement	K3, S3
CO4	Perform power measurement in electrical system	K3, S2
CO5	Demonstrate the time and frequency response of RLC circuits	K3, S3

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	Μ	Μ	L				Μ	L		L	Μ	Н
CO2	Н	Н	М	М	L				Μ	L		L	Μ	Н
CO3	Н	Н	Μ	М	L				Μ	L		L	Μ	Н
CO4	Н	Н	М	М	L				Μ	L		L	Μ	Н
CO5	Н	Н	Μ	М	L				Μ	L		L	М	Н

LIST OF EXPERIMENTS:

1. Verification of Kirchhoff's voltage and Current Laws.

2. Verification of Network theorems(Superposition, Thevenin's and Maximum power transfer theorems)

3. Measurement of frequency and phase difference using CRO/DSO.

- 4. Frequency response of series RLC circuit.
- 5. Measurement of form factor and peak factor for different waveforms.
- 6. Measurement of two port network parameters.
- 7. Power and power factor measurement by two wattmeter method.
- 8. Measurement of Energy using single phase energy meter.
- 9. Transient response of series RL and RC circuit.
- 10. Simulation of low pass and high pass passive filters.

	SE COD		CO	URSE		.E: EL			C DEV	ICES	& L	. T	P	С
1151	EE302					CIRC	UITS	LAB			C	0	2	1
COURSE	CATE	GOR	(:											
Program	Core													
PREAME	BLE :													
lt is aim applicatio		gain	know	ledge	on	electro	onic (device	es an	d ciro	cuits o	peratio	n for	various
PREREQ	UISITE	COU	RSES	5:										
Basic Ele	ctrical &	& Elec	tronic	s Eng	ineeri	ng Lal	C							
RELATE	D COUI	RSES	:											
Power El	ectronic	s and	Drive	s Lab										
COURSE	EDUC	ATIO	NAL C	BJE	CTIVE	S :								
The obje	ctives of	f the c	ourse	are to	D,									
• 11	ndersta	nd the	char	actoria	etice c	of vario	ام عدد	octror	nic day	licos				
	ndersta													
	ain the		-						-		nnlifier	circuits	:	
	ndersta		•		•	•	•		•		npiirioi	onound		
COURSE				J										
	the suc	-	-	noletic	on of t	he coi	urse. s	studer	nts wil	l be al	ble to:			
СО												nowle	dge Le	vel
Nos.						utcor					Blo		on revi Taxono	
CO1	Perforr and UJ	JT										K3	s, S2	
CO2	Demor circuits	5								•		K3	s, S3	
CO3	Build specific	cation										K3	s, S2	
CO4	Demor and cla	amper	circui	ts							•	K3	s, S3	
CO5	Demor and W						nases	shift o	scillat	or		K3	s, S3	
CORREL	ATION	OF C	Os W	ITH P	Os A	ND PS	SOs	I	I	I		I	I	I
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L			L				М	L		L	L	L
<u>CO2</u>	H	M	Μ	Μ	L	L			M	L	L	L	M	M
1-112	Н				L	1		1	Μ	L		L	M	M
CO3 CO4	H	L			1				Μ	1		1	М	М

Н

CO5

Μ

Μ

Μ

L

L

Μ

L

L

Μ

L

Μ

LIST OF EXPERIMENTS:

- 1. Bipolar Junction transistor CE, CB, CC characteristics
- 2. JFET characteristics and parameter determination
- 3. UJT & SCR Characteristics & UJT Controlled SCR
- 4. Characteristics of BJT Amplifier frequency response
- 5. Characteristics of Class A & B amplifier
- 6. Characteristics of Class C & D amplifier
- 7. Positive and negative Clipper circuits design and Characteristic
- 8. Positive and negative clamper circuits design and Characteristic
- 9. Voltage regulators (load and line regulation).
- 10. RC phase shift oscillator circuit design and verification
- 11. Wien Bridge oscillator circuit design and verification

COURSE TITLE: DC MACHINES & TRANSFORMERS LAB

L	Т	Р	С
0	0	2	1

COURSE CATEGORY:

Program Core

PREAMBLE :

The course provides an introduction to DC machines and transformers. It deals with load and open circuit characteristics DC machines and transformers.

PREREQUISITE COURSES:

Basic Electrical & Electronics Engineering Lab

RELATED COURSES:

Solid State Drives, AC Machines, Control System, Special Electrical Machines

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

• Expose the student for the operation of DC machines and transformers and provide experimental skills

COURSE OUTCOMES :

CO Nos.				Cou	rse O	utcon	nes				Knowledge Level (Based on revised Bloom's Taxonomy)				
CO1	Perfor	m the	chara	cteris	tic stu	dy of	DC SI	nunt G	Genera	ator		K3	, S3		
CO2		Perform the characteristic study of DC compound machines K3, S3 Perform the load characteristic of DC motors.													
CO3	Perfor	m the	load o		K3	, S3									
CO4	Demonstrate speed control methods for DC motors and also perform the Swinburne's test to find the efficiency of DC machines K3, S3														
CO5	Execu param					or ca	lculati	ng pe	erform	nance		K3, S2			
CORREL	ATION	OF C	Os W	ITH P	Os A	ND P	SOs								
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	Н	Н		Μ					М	L		L	Н	М	
CO2	Н	Н		Μ	L				М	L			Н	Μ	
CO3	Н	Н		Μ	L				Μ	L			Н	Μ	
CO4	Н	H		M	L				M	L		L	H	M	
CO5	Н	Н		М					Μ	L			Н	Μ	

LIST OF EXPERIMENTS

- 1. Open circuit and load characteristics of D.C separately excited shunt generator
- 2. Open circuit and load characteristics of D.C self-excited shunt generator
- 3. Load characteristics of D.C. compound generator with differential and cumulative connection
- 4. Load characteristics of DC compound motor
- 5. Load characteristics of D.C shunt motor
- 6. Load characteristics of D.C series motor
- 7. Swinburne's test in DC machine
- 8. Speed control of D.C shunt motor
- 9. Open circuit and short circuit tests on single and three phase transformer
- 10. Load test on single and three phase transformer
- 11. Separation of no-load losses in single phase transformer

L	Т	Р	С
0	0	2	1

COURSE CATEGORY:

Program Core

PREAMBLE:

The course provides the information to obtain the various performance characteristics of Three phase induction motors, single phase induction motors and synchronous machines by conducting different test methods. It also gives the information on speed control of slip ring induction motor.

PREREQUISITE COURSES:

DC Machines and Transformer

RELATED COURSES:

Solid State Drives, Special Electrical Machines

COURSE EDUCATIONAL OBJECTIVES:

The objective of the course is to,

• Understand the various performance characteristics of Induction motors and Synchronous machines.

COURSE OUTCOMES:

CO Nos.				Со	urse	Outco	omes				d	Level of learning domain (Based on revised Bloom's taxonomy)						
CO1		orm O rmine iods.									:	K3, S2						
. CO2		ute lo nverte				onou	s moto	or for i	dentif	'ying ∖	/	K3, S2						
CO3	for id	Perform OC and SC tests on three phase Induction motor for identifying performance characteristics through circle diagram																
CO4		l the e ors usi										K	3, S2					
CO5	Exec	ute sp	beed c	contro	l in slip	o ring	induc	tion m	otor			K3, S2						
CORREL	ATION	OF C	Os W	ITH P	'Os A	ND P	SOs											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2				
CO1	Н	Н		М					М	L			Н	L				
CO2	Н	Н		Μ					Μ	L			Н	L				
CO3	Н	Н		Μ					Μ	L			Н	L				
CO4	Н	Н		Μ					Μ	L			Н	L				
CO5	Н	Н		Μ	L				Μ	L			Н	L				

LIST OF EXPERIMENTS

1. Determination of voltage Regulation of three phase alternator by EMF and MMF methods

- 2. Determination of voltage Regulation of three phase alternator by ZPF method
- 3. Slip test on three phase alternators.
- 4. V and Inverted V curves of Three Phase Synchronous Motor
- 5. Load test on three-phase induction motor
- 6. No load and blocked rotor test on three-phase induction motor.
- 7. Separation of No-load losses of three-phase induction motor
- 8. Load test on single-phase induction motor
- 9. No load and blocked rotor test on single-phase induction motor
- 10. Study of different Speed control of three phase Slip ring Induction motor

COURSE TITLE: CONTROL & INSTRUMENTATION LAB

L	Т	Р	С
0	0	2	1

COURSE CATEGORY:

Program Core

PREAMBLE :

The aim of this lab is to fortify the students with an adequate work experience in the measurement of different quantities and also the expertise in Digital simulation of systems

PREREQUISITE COURSES:

Circuit Analysis Lab

RELATED COURSES:

DC Machines & Transformers Lab

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Done the Measurement of displacement, resistance, inductance, torque and angle
- Give exposure to AC, DC bridges measurement.
- Design the compensators
- Determine the transfer function of Electrical Machines

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.				Cou	rse O	utcon	nes				Knowledge Level (Based on revised Bloom's Taxonomy)					
CO1	Demo	nstrate	e the t	ransfe	er fund	ction c	of Elec	trical	Mach	ines	K3, S3					
CO2		Execute the design of first and second order and K3, S2														
CO3		Perform measurement of phase difference, voltage, current and frequency of an input signal K3, S2														
CO4	Perfor and A				K3, S2											
CO5	Perfor	m the	meas	ureme	ent of	BH cu	urve u	sing s	oleno	id		K3	, S2			
CORREL	ATION	OF C	Os W	ITH P	'Os A	ND P	SOs									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	Н	Н	М	Μ	М				Μ	L	L	L	Н	М		
CO2	Н	Н	Μ	М	М				Μ	L	L	L	Н	Μ		
CO3	Н	Н		М	L				Μ	L		L	Н	Μ		
CO4	Н	Н	Μ	М	L				Μ	L		L	Н	М		
CO5	Н	Н		М	L				М	L		L	Н	М		
COURSE	E CONT	ENT:														
LIST OF	EXPER		TS													

1. Measurement of phase difference and frequency of a sinusoidal ac voltage using C.R.O.

2. Measurement of voltage, current and resistance using dc potentiometer

- 3. Measurement of low resistance by Kelvin's double bridge
- 4. Measurement of inductance through various bridges (Maxwell's bridge, Hay's bridge, Anderson's bridge)
- 5. Measurement of capacitance through various bridges (Owen's bridge, De Sauty bridge, Schering bridge)
- 6. Determination of BH curve using solenoid
- 7. Determination of transfer function of DC machines
- 8. Determination of transfer function of servo motors
- 9. Digital simulation of first and second order systems using time and frequency response methods and obtaining the performance specifications
- 10. Design of compensator (lead,lag, lag-lead) of a system by digital simulation

COURSE CODE:
1151EE306

COURSE TITLE: MICROPROCESSOR & MICROCONTROLLER LAB

L	Т	Ρ	С
0	0	2	1

COURSE CATEGORY:

Program Core

PREAMBLE :

Microprocessors and Microcontrollers laboratory course helps the students to develop their knowledge on processor architecture and the programming skills. This laboratory course provides hands-on experience to interface I/O devices. The skills acquired through the experiments help the students do their projects and enhance their knowledge on the latest trends and technologies.

PREREQUISITE COURSES: Electronic Devices & Circuits Lab

RELATED COURSES: Project Work

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Give hands on experience in 8085 assembly language programming.
- Give hands on experience in peripheral interfacing with 8085 and 8051.
- Introduce 8051 microcontroller programming.

COURSE OUTCOMES :

CO Nos.	Course Outcomes	Level of learning domain (Base on revised Bloom's taxonomy)
CO1	Demonstrate an assembly language programs for all arithmetic operations and code conversions using instruction sets of 8085.	K3, S3
CO2	Perform an assembly language program for interfacing 8085 with USART, ADC/DAC, Timer IC & Keyboard / Display Controller).	K2, S2
CO3	Demonstrate an assembly language programs for all arithmetic operations, Timers/Counters and Interrupt handling using instruction sets of 8051.	K3, S3
CO4	Perform an assembly language program for interfacing 8051 with Stepper Motor, DC Motor, ADC/DAC, Matrix/Keyboard & LCD.	K2, S2
CO5	Demonstrate an assembly language programs for all arithmetic operations and code conversions using instruction sets of ARM processor.	K3, S3

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	М	М	М				Μ	L	L	L	Н	М
CO2	Н	М	Μ	М	М				М	L	L	L	H	М
CO3	Н	М		М	L				Μ	L		L	Н	М
CO4	Н	М	Μ	М	L				Μ	L		L	Н	М
CO5	М	М		М	L				М	L		L	Н	М
COURSE CONTENT:														
LIST OF EXPERIMENTS														
Assembly Language Programming With 8085:														
	 Arithmetic Operations of two 8-bit numbers (Addition, Subtraction, Multiplication & Division). 												ication	
	2	. Arra	anging a	an array	of da	ta (as	scendi	ng or	der &	descer	nding o	rder).		
	3	. Coo	de Conv	ersion	BCD	to HE	X, HE	EX to E	BCD,	HEX to	ASCII	& ASC	CII to H	EX).
	4		erfacing yboard/					ADC/E	DAC,	8253	(Tim	ner IC	2) &	8279
Assem	nbly L	angu	age Pro	gramn	ning V	Vith 8	051 N	licroo	contro	oller:				
	5		hmetic (vivision).	•	ons of	f two a	8-bit r	numbe	ers (A	ddition	, Subtr	action,	Multip	lication
	6	. Ver	ify Time	r/ Cour	ter.									
	7	. Ver	ify Inter	rupt Ha	ndlina									
	8		erfacing	•	0		? Mot	or ΔΓ		C Mat	riv/Kov	/hoard	8 I CD)
Accor	-		age Pro	· · ·						, iviai		Joanu		
ASSell	-	-	-	-	-						0.1.4			
	9		hmetic (vivision).	•	ons of	two a	8-dit r	numbe	ers (A	adition	, Subtr	action,	Multip	lication
	1	0. Coo	de Conv	ersion.										

COURSE CODE:
1151EE307

COURSE TITLE: DISCRETE TIME SIGNAL PROCESSING LAB

Т	Р	С
0	2	1

L

0

COURSE CATEGORY:

Program Core

PREAMBLE :

To carry out software and hardware experiments illustrating the basic principles and techniques of digital signal processing and to learn the programming of real-time signal processing algorithms on a concrete DSP chip.

PREREQUISITE COURSES:

Transform and Partial Differential Equations

RELATED COURSES:

Embedded System

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to

- Understand the architecture of DSP processor
- Learn the implementation aspects of FFT
- Understand the Linear and Circular Convolution
- Understand the design concepts of FIR and IIR filters

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Demonstrate the applications of Fast Fourier Transform	K3, S3
CO2	Execute Linear and Circular Convolution	K3, S2
CO3	Perform IIR and FIR filters	K3, S2
CO4	Perform sampling and aliasing on the given signal	K3, S2
CO5	Demonstrate DSP processor based implementation of filters	K3, S3

CORRELATION OF COS WITH POS AND PSOs

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	Μ	Μ	М				М	L		L	Μ	Н
CO2	Н	Н	М	М	М				М	L		L	Μ	Н
CO3	Н	Н	Μ	Μ	М				М	L		L	Μ	Н
CO4	Н	Н	Μ	Μ	М				М	L		L	Μ	Н
CO5	Н	Н	Μ	М	М				М	L		L	Μ	Н
COURSE	COURSE CONTENT:													

LIST OF EXPERIMENTS

MATLAB / Equivalent Software Package

- 1. Generation of different types of signals
- 2. Implementation of Linear and Circular Convolutions
- 3. Implementation of Fast Fourier Transform
- 4. Design FIR filter
- 5. Design IIR filter
- 6. Sampling & Aliasing

DSP Processor Based Implementation

- 7. Study the architecture and addressing modes of Digital Signal Processor
- 8. Implementation of Linear Convolution
- 9. Implementation of Circular Convolution
- 10. FIR Filter Implementation
- 11. IIR Filter Implementation
- 12. Sampling of Input Signals

COURSE CODE:
1151EE308

COURSE TITLE: POWER ELECTRONICS & DRIVES LAB

Т	Р	С
0	2	1

L

0

COURSE CATEGORY:

Program Core

PREAMBLE :

This lab introduces the concept of power control and power conversion techniques and helps to control DC motors and Induction motors.

PREREQUISITE COURSES:

Electronic Devices & Circuits Lab

RELATED COURSES:

Power System Simulation lab

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Make the students aware of different power conversion techniques.
- Understand the various control methods for machines

COURSE OUTCOMES :

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Sketch the characteristics of various power switching devices.	K2,S2
CO2	Demonstrate the concept of working of single phase and three phase rectifiers.	K3,S3
CO3	Show the working of power circuit and control circuit of single phase half & full bridge inverters and three phase inverters.	K3,S3
CO4	Accomplish the task of implementing a DC-DC converters with control.	K3,S3
CO5	Demonstrate the working of phase controlled AC- AC converters i.e controllers and cycloconverters.	K3,S3

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		Μ	Μ							Μ	Μ		
CO2	Н		Н	Н		М					Н	Н	М	
CO3	Μ		Μ	Μ		М					Μ	Μ		
CO4	Μ	Μ		Μ		М			Μ		Μ	Μ		Μ
CO5	Н	Н	Н	Н		М			Н		Н	Н		

LIST OF EXPERIMENTS

- 1. VI Characteristics of SCR, IGBT & MOSFET.
- 2. Single phase full converter feeding R, RL, RLE load.
- 3. Single phase semi converter feeding R, RL, RLE load.
- 4. Single phase dual converter.
- 5. MOSFET based step up and step down chopper
- 6. IGBT based single phase PWM inverter.
- 7. Three phase IGBT based PWM inverter control of induction motor.
- 8. Single phase AC voltage controller
- 9. Single phase cycloconverter
- 10. Three phase full converter.
- 11. Series resonant converter.

COURSE CODE:
1151EE309

COURSE TITLE: POWER SYSTEM SIMULATION LAB

L	Т	Р	С
0	0	2	1

COURSE CATEGORY:

Program Core

PREAMBLE :

This course teaches Modelling of Transmission Lines, and Solution of Load Flow analysis

PREREQUISITE COURSES:

Circuit Analysis Lab

RELATED COURSES:

Power System Operation and Control

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand about transmission line parameters.
- Formulate Z bus and Y bus
- Develop Load flow analysis GS and NR method
- Construct suitable model for load frequency control
- Perform Short circuit analysis for the given power system network
- Solve transient stability problem for the power system
- Plan economic dispatch schedule for the given power system

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Perform the calculation for transmission line parameters	K2,S2
CO2	Build Z bus and Y bus and perform load flow analysis	K2,S2
CO3	Perform Short circuit analysis	K3,S3
CO4	Demonstrate load frequency control on power system	K2,S2
CO5	Execute transient stability study	K2,S2
CO6	Perform Economic dispatch schedule	K2,S2

CORRELATION OF COS WITH POS AND PSOS

COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	Μ	L	Н				L	L	L	L	Н	М
CO2	Н	Н	М	L	Н				L	L	L	L	Н	М
CO3	Н	Н	М	L	Н	L			L	L	L	L	Н	М
CO4	Н	Н	Μ	L	Н	L			L	L	L	Γ	Н	М
CO5	Н	Н	М	L	Н	L			L	L	L		Н	М
CO6	Н	Н	Μ	L	Н				L	L	L		Н	М

LIST OF EXPERIMENTS

- 1. Calculation of transmission line parameters using MATLAB
- 2. Voltage regulation and efficiency calculation of medium, long transmission line using MATLAB
- 3. Formulation of Y bus and Z bus matrix using MATLAB
- 4. Load flow analysis GS method using MATLAB
- 5. Load flow analysis NR method using MATLAB
- 6. Short circuit analysis on DC network analyzer
- 7. Symmetrical component analyzer
- 8. Transient stability analysis
- 9. Load frequency control of single area and two area power system with MATLAB/Simulink
- 10. Economic dispatch control using MATLAB

PROGRAMME ELECTIVE COURSES

COURSE TITLE: POWER QUALITY ENGINEERING

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Program Elective

PREAMBLE :

This course covers an introduction to power quality, voltage sags, overvoltage, harmonics and power quality montoring

PREREQUISITE COURSES: Power System Analysis

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand about basics of power system quality
- Acquire knowledge in calculation of voltage sags and interruptions
- Familiar with overvoltage and its causes
- Explain about harmonic distortion and its control
- Understand the power quality monitoring and its equipments

COURSE OUTCOMES :

CO Nos					Cours	se Ou	tcom	es			(Knowledge Level (Based on revised Bloom's Taxonomy)				
CO.	1	Expla	in abou	t powe	er sys	tem q	uality	issue	S			K2				
CO	2	Calcu	Calculate voltage sags and interruptions										K2			
CO	3	Have	Have an insight on over voltages and its causes K2													
CO	4	Expla	Explain about harmonic distortion and its control K2													
CO		Illustrate the fundamentals of power quality monitoring and its equipments K2														
CORR	ELA		OF CO	s and) POs											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	Н	М	L								L	М	Н	L		
CO2	Н	М	L								L	М	Н	L		
CO3	Н	M L									L	М	Н	L		
CO4	Н	M L								L	М	Н	L			
CO5	Н	М	L								L	М	Н	L		

	E CONTENT:	
UNIT I	INTRODUCTION TO POWER QUALITY	9
- Wave	nd definitions – Overloading – Under voltage – Sustained interru form distortion – Total Harmonic Distortion (THD) – Compute turers Associations (CBEMA) curve	
UNIT II	VOLTAGE SAGS AND INTERRUPTIONS	9
Estimati	of sags and interruptions – Estimating voltage sag performance on the sag severity – Mitigation of voltage sags – Active series switches and fast transfer switches	
UNIT III	OVERVOLTAGES	9
voltage : Shieldin	of over voltages – Capacitor switching – Lightning – Ferro res swells – Surge arresters – Low pass filters – Power conditioners - g – Line arresters – Protection of transformers and cables – Com s – PSCAD and EMTP	- Lightning protection -
UNIT IV	HARMONICS	9
from con characte	c distortion – Voltage and current distortion – Harmonic indices nmercial and industrial loads – Locating harmonic sources – P ristics – Resonance – Harmonic distortion evaluation – Devices f n – Passive filters – Active filters – IEEE and IEC standards	ower system response
UNIT V	POWER QUALITY MONITORING	9
equipme	ng considerations – Power line disturbance analyzer – Power nt – Harmonic / spectrum analyzer – Flicker meters – Di ons of expert system for power quality monitoring	
		,
		TOTAL: 45 PERIODS
ТЕХТ ВС	OKS:	
	OKS: Iath H.J.Bollen, Understanding Power Quality Problems-Voltage EEE Press,2000	TOTAL: 45 PERIODS
1. M I 2. F	ath H.J.Bollen, Understanding Power Quality Problems-Voltage	TOTAL: 45 PERIODS sag & Interruptions,
1. N I 2. F "	Math H.J.Bollen, Understanding Power Quality Problems-Voltage EEE Press,2000 Loger C. Dugan, Mark F. McGranagham, Surya Santoso and H.W	TOTAL: 45 PERIODS sag & Interruptions,
1. M I 2. F "	Math H.J.Bollen, Understanding Power Quality Problems-Voltage EEE Press,2000 Loger C. Dugan, Mark F. McGranagham, Surya Santoso and H.W Electrical Power Systems Quality", McGraw Hill, 2003.	TOTAL: 45 PERIODS sag & Interruptions,
1. M I 2. F # REFERI 1. F	Aath H.J.Bollen, Understanding Power Quality Problems-Voltage EEE Press,2000 Coger C. Dugan, Mark F. McGranagham, Surya Santoso and H.W. Electrical Power Systems Quality", McGraw Hill, 2003.	TOTAL: 45 PERIODS sag & Interruptions, /ayne Beaty,
1. M I 2. F REFERI 1. F 2. F	Aath H.J.Bollen, Understanding Power Quality Problems-Voltage EEE Press,2000 Loger C. Dugan, Mark F. McGranagham, Surya Santoso and H.W. Electrical Power Systems Quality", McGraw Hill, 2003. ENCE BOOKS: SCAD User Manual.	TOTAL: 45 PERIODS sag & Interruptions, /ayne Beaty,

														1
COI	JRSE	E CODE	: 1152	EE102						CTION	L	Т	Ρ	С
							AND S	WITC	H GEA	R	3	0	0	3
COUR	SE C	ATEGO	RY: PI	rogram	Electi	ve								
protect Switche Types	PREAMBLE : The functioning of a power system depends significantly on efficient and reliable protection schemes. This course covers a refreshed pedagogy of Power System Protection and Switchgear technology covering the contemporary protection system, relay & breaker principles, Types operations and applications infused with measuring, control and regulating arrangements for modern power system network.													and oles,
PRERE	QUI	SITE CO	DURSE	ES:										
Circuit Analysis, DC Machines and Transformer														
COURSE EDUCATIONAL OBJECTIVES :														
The objectives of the course are to,														
•	term Expla requ Unde distri Unde	inologie ain the o irements erstand ibution s	s operati s Protec system the arc	ng prir ction c cing ph	nciples of elec enome	of var ctrical ena, are	ious re power c quen	elays b appa ching a	ased u ratus and bre	ective system pon tech generation eaking in t	nology n, trai	and t	funct sion	ional
COUR	SE O	UTCON	IES :											
Upo	on the	e succes	ssful co	ompleti	on of t	he cou	ırse, st	udents	will be	able to:				
CO Nos				Co	ourse (Outcoi	nes			(E	(nowle Based oom's	on re	vise	b
CO		List out protectio				f a pro	tective	syster	n and			K2		
CO2		Contras ⁻ technolo						ased or	ו			K2		
COS		Summa						ration,				K2		
CO	1	transmis Interpret	t about	the ar				rc quer	nching	in		K2		
CO	5	<u>circuit b</u> Compar	e diffei		rcuit br	eaker	princip	les an	d			K2		
		operatio ION OF		WITH	POs A	ND PS	iOs					1 \2		
COs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 F	SO1
CO1	Н	L												Н
CO2	<u>H</u>					L	L					L		<u>H</u>
CO3 CO4	<u>H</u>				L		L							<u>Н</u>
C04 C05	<u>H</u> H		L											<u>н</u> Н
		1												

COURSE CONTENT:								
UNIT I	INTRODUCTION	9						
	cuit currents and relay protection - basic terminology perating principles of relays - The universal relay - to lications							
UNIT II	OPERATING PRINCIPLES AND RELAY FUNCTION	9						
	rectional over current relays - distance relays - differe e sequence relays - Electromagnetic and solid sta ay, numerical relay	•						
UNIT III	PROTECTION OF POWER APPARATUS	9						
main units - carrier cur	transformer protection - bus zone protection - feeder rrent protection of transmission lines - Relay coordi er system protection - A.C.motor protection - rectifier p	nation of a sample						
UNIT IV	ARCING PHENOMENA AND ITS APPLICATIONS	9						
	d arc quenching - circuit breaker rating RRRV - cu king characteristics of HRC fuses - DC circuit breaking							
UNIT V	CIRCUIT BREAKERS	9						
	akers - air blast circuit breakers - vacuum and SF6 circuits - vacuum and SF6 circuits - vacuum and SF6 circuits - vacuum and switches.							
	ТО	TAL: 45 PERIODS						
TEXT BOOKS:								
1. B.Ravindranath Eastern Ltd, 197	and N.Chander, "Power Systems protection and swite 7.	chgear", Wiley						
2. Badri Ram and Viswakarma, D.N., "Power System Protection and Switch Gear", Tata								
	blishing Company Ltd., 2001.							
McGraw-Hill Put								
McGraw-Hill Put REFERENCE BOOKS: 1. C.L.Wadhwa, "E	lectric power systems", New Age International (P) Lto Babu and S.Choudhuri, "Power systems protection	d publishers, 1983.						
McGraw-Hill Put REFERENCE BOOKS: 1. C.L.Wadhwa, "E 2. S.P.Patra, S.K.E Publishing Co., 7 3. Sunil S. Rao, "S	Electric power systems", New Age International (P) Lto Babu and S.Choudhuri, "Power systems protection 1983. witchgear and protection", Khanna publishers, New D	d publishers, 1983. ", Oxford and IBM Delhi, 1986.						
McGraw-Hill Put REFERENCE BOOKS: 1. C.L.Wadhwa, "E 2. S.P.Patra, S.K.E Publishing Co., " 3. Sunil S. Rao, "S 4. Lewis Blackburr Dekker Inc., 199	Electric power systems", New Age International (P) Ltc Babu and S.Choudhuri, "Power systems protection 1983. witchgear and protection", Khanna publishers, New D n "Protective Relaying – Principles and applications 88.	d publishers, 1983. ", Oxford and IBM Delhi, 1986. s", Second Edition,						
McGraw-Hill Put REFERENCE BOOKS: 1. C.L.Wadhwa, "E 2. S.P.Patra, S.K.E Publishing Co., " 3. Sunil S. Rao, "S 4. Lewis Blackburr Dekker Inc., 199	Electric power systems", New Age International (P) Lto Babu and S.Choudhuri, "Power systems protection 1983. witchgear and protection", Khanna publishers, New D n "Protective Relaying – Principles and applications 8. Bao, "Power System Protection Static Relays", Sec	d publishers, 1983. ", Oxford and IBM Delhi, 1986. s", Second Edition,						
McGraw-Hill Put REFERENCE BOOKS: 1. C.L.Wadhwa, "E 2. S.P.Patra, S.K.E Publishing Co., 7 3. Sunil S. Rao, "S 4. Lewis Blackburr Dekker Inc., 199 5. T.S.Madhava R	Electric power systems", New Age International (P) Ltc Babu and S.Choudhuri, "Power systems protection 1983. witchgear and protection", Khanna publishers, New D n "Protective Relaying – Principles and applications 18. Rao, "Power System Protection Static Relays", Sec 04	d publishers, 1983. ", Oxford and IBM Delhi, 1986. s", Second Edition,						

COURSE TITLE: HIGH VOLTAGE ENGINEERING

L	Т	Р	С
3	0	0	3

COURSE CATEGORY:

Program Elective

PREAMBLE :

This course covers specifications of insulation materials in liquid, gas and solid case and identifies the effect of extra high voltage on the environment. This module will prepare students for effective participation in the field of high voltage power systems within the electrical engineering environment.

PREREQUISITE COURSES:

• Power System Analysis

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand the principles of theory of high voltage generation and measurements
- Understand the operation of high voltage power supplies for ac, dc, and impulse voltages
- Get familiar with various applications where high voltage field is used
- Understand breakdown of HV insulation (solid, Liquid and Gas)
- Understand lightning phenomena and HV Insulation Environmental pollution.

COURSE OUTCOMES :

CO Nos				C	Cours	e Out	come	S			(E	Knowledge Level (Based on revised Bloom's Taxonomy)			
C01		xplain nd imp	-	•		hind g	genera	ating h	igh D	C-, AC	-	ł	<2		
C02)evelop oltage			circu	ent high	ו	ł	〈 3						
C03		Perform a dynamic response analysis of high voltage K2													
C04		lustrat ystem:				sulatior	١	К2							
C05	a		tion a	nd ha	zards					nt to the s withir		ł	<2		
CORR	ELAT	ION O	F CO	s WIT	H POs	S AND	PSO	5							
COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO 9	PO10	P011	PO12	PSO1	PSO2	
CO1	Н	Μ	М									L	Н		
CO2	Н	Μ	Μ	L								L	Н	L	
CO3	Н	Μ	Μ	L								L	Н	L	
CO4	Н	Μ	Μ									L	Н	L	
CO5	Н	Μ	Μ	L		L					L	L	Н		

COURSE	E CONTENT:	
UNIT I	OVER VOLTAGES AND INSULATION CO ORDINATIONS	9
links – P and swite	ion – Historical sketch – Comparison between AC and DC tran lanning and modern trends. Causes of over voltages in trans- ching over voltages - effects of over - voltages on power system over voltages - surge absorbers and surge diverters – tion.	mission lines - lightning n equipment - protection
UNIT II	GENERATION OF HIGH VOLTAGES AND HIGH CURRENT	9
Cockcrof	on of high AC voltages - cascaded transformers - generation t Walton circuit and its qualitative analysis - generation of impuls rcuit - generation of high impulse current - Tripping and control of	se and switching surges
UNIT III	MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS	9
potential	ment of AC, DC impulse and switching surges using sphere dividers and high speed CRO, op to Electronics method; Fiber neasurements; partial discharge; dielectric loss measurement us	optic method; RIV and
UNIT IV	ELECTRICAL BREAKDOWN IN GASES, SOLIDS AND LIQUIDS	9
Time lag	n processes - Townsend & Streamer theory - the sparking vo for breakdown - Breakdown in non-uniform fields and corona kdown in pure and commercial liquids and solids dielectrics	
UNIT V	HIGH VOLTAGE TESTING PRACTICES	9
corona a	/DE specification for testing; correction factor; high voltage testinn nd RIV testing measurement; Non destructive insulation tests; s EMC; EMI/EMC testing practice; corona and ESD testing techn	ources and hazards of
		TOTAL: 45 PERIODS
ТЕХТ ВО	OKS:	
	.L. wadwa " High voltage engineering " New Age International P II, III, IV,V)	Ltd. reprint 2001. (Unit
	/I.S.Naidu and N.Kamaraju, "High voltage Engineering" Tata Mc ompany, New Delhi, 1983	Graw Hill publishing
	ubir Ray, " An introduction to High voltage Engineering", PHI Le	
	ohn Kuffel and Peter Kuffel, " High voltage engineering fundame Isevier.	ntals", second edition,

COURSE C	ODE:
1152EE1	05

COURSE TITLE: ADVANCES IN POWER SYSTEM

Т	Р	С
0	0	3

L

3

COURSE CATEGORY:

Program Elective

PREAMBLE :

This course aims to model the steady-state operation of large-scale power systems and to solve the power flow problems and analyze the stability

PREREQUISITE COURSES:

Power System Analysis

RELATED COURSES:

Power System Protection & Switch gear

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand the harmonics and stability analysis of multi-machine system.
- Gain knowledge on power quality standards
- Familiar with basics of grid and distribution systems and power system networking.

COURSE OUTCOMES :

CO Nos		Course Outcomes (Based Bloom's												sed
CO1		Explain the basics of harmonics and sub harmonics K2												
CO2	2	Discuss	the S	Stability	y anal	ysis of	ⁱ multi	-mach	ine sy	stem		ŀ	〈 2	
COS	<	Describ monitor		•	ver q	uality	stanc	dards,	curv	es and	ł	ł	≺2	
CO4	1	Outline	the ba	asics c	of Grid	and c	listribu	ution s	ystem	S		ŀ	〈 2	
CO5		Summa control	rize th	ne pov	ver sys	stem r	etwor	king, p	orotec	tion and	k	ł	≺2	
CORR	ELA	TION O	F CO	s WIT	H POs	s AND	PSO	S						
COs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L	L									М	Н	
CO2	Н	М	L									Μ	Н	L
CO3	Н	М	L					L				М	Н	L
CO4	Н	L	L									М	Н	
CO5	Н	L	L									Μ	Н	L
COUR	SE (CONTER	NT:											
UNIT I		HARMO	NICS	& SU	в но	RMON		DSCIL	LATIC	ON				9
		ding sul • harmor										cuit -	sub ha	armonic

UNIT II	STABILITY OF MULTIMACHINE SYSTEM	9						
Transient stabilization of multi machine power system with nontrivial transfer conductance - on- line transient stability analysis - excitation control for multi machine power system								
UNIT III	NIT III POWER QUALITY 9							
	uality issues- standards - power quality monitoring devices - power grid - CBEMA curves	er quality conditioners						
UNIT IV	GRID BASED POWER SYSTEM	9						
	o grid based distribution power generation system – Grid – tied ed solutions applied to power distribution system.	power system - smart						
UNIT V	POWER SYSTEM NETWORKING	9						
	ystem network reduction techniques - synchronization and kr - protection control – EMS - SCADA, RTU, PLC	on reduction in power						
		TOTAL: 45 PERIODS						
ТЕХТ ВО	OKS:							
1. P	ower System Network Reduction Techniques – Dr.C.Radha Kris	hnan.						
2. P	ower system stability- Kundur.							
3. P	ower quality- C.sankaran.							
REFERE	NCE BOOKS:							
1. P	ower system engineering – Rajput.							
2. L	Inderstanding the principles of power system harmonics- Arillaga	, CRC publications						
ONLINE RESOURCES:								
1. <u>h</u>	1. https://archive.nptel.ac.in/noc/courses/noc19/SEM1/noc19-ee13/							

COU	RSE (CODE:			(COURS	SE TIT	LE:			L	Т	Р	С	
1152EE106 SMART GRID										3	0	0	3		
COURSE CATEGORY: Program Elective															
PREAMBLE :															
To enable the students acquire knowledge on smart grid, different options of architectural design and sensors, measurement technology for various aspects of smart grid, renewable															
energy sources and storage integration with smart grid.															
PREREQUISITE COURSES: Power System Analysis															
COURSE EDUCATIONAL OBJECTIVES :															
The objectives of the course are to,															
•	Und	erstand	the ha	nsic cor	ncents	comp	onents	anda	archite	cture of	smart	arid			
•		erstand			•	•						gna			
٠		cate the						•		0					
٠	Fam	iliar abo	out the	batter	y techr	nology	and en	ergy s	torage						
٠	Brie	fabout	the role	e of Ele	ectric V	/ehicle	s in sm	art grie	b						
COUR	RSE C	UTCO	MES :	Upon t	he suc	cessfu	I comp	letion o	of the d	course,	studer	nts will	be abl	e to:	
					C	- O ut							e Leve		
CO N	ios.				Cours	e Outo	comes				•		revis axonc		
CO)1	Explain											K2		
CO	2	Describ smart g		rent m	easuri	ng me	thods a	and se	nsors	used ir	1		K2		
CO	3	Summa		arious r	renewa	able en	ergy te	chnolo	ogies				K2		
<u> </u>		Interpre								ort arid		K2			
		Summa TION O						enicies	in sm	an griu			K2		
						1				1					
COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	М	М			М	L					L		М		
CO2	М	М			М	L					L		М		
CO3	М	М			М	L					L		М		
CO4	М	М			М	L					L		М		
CO5	М	М			М	L					L		М		
COUR	RSE C	ONTEN	IT:												
UNIT	I I	NTROD	UCTIO	ON										9	
		rd Vers			id Rat	tionale	for S	nart (-	irid C	ompute	tional	Intellio	ience		
Syste	m E	nhance	ment,	Com	munica	ation	and	Standa	ards,	Enviro	nment				
Share	eholde	rs Roles	s and F	-unctio	n, Arch	nitectu	re, Fun	ctions	ot Cor	nponer	nts				

UNIT II	SENSORS AND MEASUREMENT 9							
Sensors for Smart Grid, Monitoring and Measurement Technologies, PMU, Smart meters, Smart Appliances, Multi Agent Systems (MAS) Technology, Micro grid and Smart grid comparison, Wide Area Measurement								
UNIT III	DISTRIBUTED GENERATION 9							
	ergy, PV Systems, Wind turbine Systems, Biomass, Small and Micro Hydro Power, Fuel thermal heat pumps.							
UNIT IV	ENERGY STORAGE 9							
	, Flow Batteries, Fuel Cell and hydrogen electrolytes, Flywheel, Super conduction energy storage systems, super capacitors, Simulation and case studies							
UNIT V	ELECTRIC VEHICLES 9							
	ectric Vehicles and hybrid, Vehicle classes, Vehicle Architecture, Gird to Vehicle (G2V) , Grid Impacts, Vehicle to Grid (V2G)							
	TOTAL: 45 PERIODS							
TEXT BO	OKS:							
	ames Momoh, "Smart Grid: Fundamentals of design and analysis", John Wiley & sons c, IEEE press 2012.							
2. Ja	anaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko							
3. Yo	okoyama, "Smart Grid: Technology and Applications", John Wiley & Sons Inc, 2012.							
	ars.T.Berger, K.Iniewski, "Smart Grid: Applications, Communications & Security" Wiley dia Pvt. Ltd, Reprint 2015.							
REFERE	NCE BOOKS:							
	doon P. Sioshansi, "Smart Grid: Integrating Renewable, Distributed & Efficient gy", Academic Press, 2012.							
2. Clark W.Gellings, "The smart grid: Enabling energy efficiency and demand response", Fairmont Press Inc,2009.								
 Qi Huang, Shi Jing "Innovative Testing and Measurement Solutions for Smart Grid", John Wiley & Sons Inc, 2015. 								
ONLINE	RESOURCES:							

1. <u>https://nptel.ac.in/courses/108/107/108107113/</u>

COURSE CODE:
1152EE107

COURSE TITLE: POWER PLANT ENGINEERING

∟ 3	0	0	3
L	Т	Р	С

9

COURSE CATEGORY:

Program Elective

PREAMBLE :

To understand the different methods of power generation; construction and working principle of power plants

PREREQUISITE COURSES:

Basic Electrical Engineering

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand the performance of thermal and hydro power plants
- Explain the function of nuclear power station
- Understand gas, diesel and non-conventional power plants

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain about thermal power plants	K2
CO2	Describe the features of hydro power plant	K2
CO3	Outline the working of nuclear power plants	K2
CO4	Explain the working of gas and diesel power plant	K2
CO5	Summarize the principle of renewable power plants	K2

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L				Γ		М				L	Н	
CO2	Н	L				L	М	L				L	Н	
CO3	Н	L				Γ		М				L	Н	
CO4	Н	L				L		L				L	Н	
CO5	Н	L				Μ	Н	L				М	Н	
COUD			цт.											

COURSE CONTENT:

UNIT I THERMAL POWER PLANTS

Energy resources and their availability - Types of power plants, selection of the plants - Basic thermodynamic cycles - Various component of steam power plant layout - Pulverized coal burners - luidized bed combustion - Coal handling systems - Ash handling systems - Forced draft and induced draft fans – Boilers Feed pumps - Super heater - Turbines - Regenerator - Condenser - Dearearators – Cooling towers

	HYDRO ELECTRIC POWER PLANTS	9								
Layout - Dams - Selection of water turbines - Types - Pumped storage hydel plants										
UNIT I	UNIT III NUCLEAR POWER PLANTS 9									
•	Principles of nuclear energy - Basic nuclear reactions - Nuclear power station –Types of Nuclear Reactor - Nuclear Waste disposal.									
UNIT I	V GAS AND DIESEL POWER PLANTS	9								
Types - Open and closed cycle gas turbine - Work output and thermal efficiency - Methods to improve thermal efficiency of gas turbine plant - Reheating - Intercooling - Regeneration and their combinations - Advantages and disadvantages - Comparison with steam power plants problems. Diesel engine power plant – component and layout.										
-										
	NON-CONVENTIONAL POWER GENERATION	9								
Solar r and ge	NON-CONVENTIONAL POWER GENERATION adiation estimation, solar energy collectors, OTEC, wind power pla othermal resources, fuel cell, MHD power generation -principle, the tion, thermionic power generation.	ints, tidal power plants								
Solar r and ge	adiation estimation, solar energy collectors, OTEC, wind power pla othermal resources, fuel cell, MHD power generation -principle, the	ints, tidal power plants								
Solar r and ge genera	adiation estimation, solar energy collectors, OTEC, wind power pla othermal resources, fuel cell, MHD power generation -principle, the	ints, tidal power plants ermoelectric power								
Solar r and ge genera	adiation estimation, solar energy collectors, OTEC, wind power pla othermal resources, fuel cell, MHD power generation -principle, the tion, thermionic power generation.	TOTAL: 45 PERIODS								
Solar r and ge genera TEXT B 1.	adiation estimation, solar energy collectors, OTEC, wind power pla othermal resources, fuel cell, MHD power generation -principle, the tion, thermionic power generation.	TOTAL: 45 PERIODS krotzki and William A. 0th reprint 2002.								
Solar r and ge genera TEXT B 1. 2.	adiation estimation, solar energy collectors, OTEC, wind power pla othermal resources, fuel cell, MHD power generation -principle, the tion, thermionic power generation.	TOTAL: 45 PERIODS krotzki and William A. 0th reprint 2002.								
Solar r and ge genera TEXT B 1. 2. REFEF	adiation estimation, solar energy collectors, OTEC, wind power pla othermal resources, fuel cell, MHD power generation -principle, the tion, thermionic power generation. OOKS: Power station Engineering and Economy by Bernhardt G.A.SI Vopat - Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 2 Power Plant Engineering: P.K Nag, Tata McGraw Hill Second Edit	TOTAL: 45 PERIODS krotzki and William A. 0th reprint 2002. tion 2001.								
Solar r and ge genera TEXT B 1. 2. REFEF 1.	adiation estimation, solar energy collectors, OTEC, wind power pla othermal resources, fuel cell, MHD power generation -principle, the tion, thermionic power generation. POOKS: Power station Engineering and Economy by Bernhardt G.A.SI Vopat - Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 2 Power Plant Engineering: P.K Nag, Tata McGraw Hill Second Edit RENCE BOOKS: An Introduction to power plant technology by G.D. Rai-Khanna I	TOTAL: 45 PERIODS krotzki and William A. 0th reprint 2002. tion 2001. Publishers, Delhi - 110								

COURSE CODE: 1152EE108

COURSE TITLE: HIGH VOLTAGE DIRECT CURRENT TRANSMISSION

Т	Р	С
0	0	3

L

3

COURSE CATEGORY:

Program Elective

PREAMBLE :

This course aims to develop the skills in the area of HVDC power transmission with the analysis of HVDC converters, Reactive power control, and HVDC cables and simulation

PREREQUISITE COURSES:

Power System

RELATED COURSES:

Transmission and Distribution

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand the concept, planning of DC power transmission and comparison with AC power transmission.
- Acquire knowledge on characteristics of HVDC converters.
- Understand the MTDC system and DC breakers with its characteristics
- Familiar with reactive power and harmonics in HVDC
- Understand the HVDC cables and Modeling of HVDC systems for digital dynamic simulation

COURSE OUTCOMES :

CO Nos.				C	Course	e Outo	comes	6			Knowledge Level (Based on revised Bloom's Taxonomy)			
CO1		xplain ansmi		HVD	K2									
CO2	2 C	Describ	e the	charad	cteristi	cs of I	HVDC	conve	erters			k	(2	
COS	۲	xplain haract			syste	em ar	id DC	brea	kers v	with its		k	<2	
CO4	1 S	Summa	arize th	ne read	ctive p	ower	and ha	armon	ics in l	HVDC		k	(2	
COS		xplain ystem							g of	HVDC		٢	<2	
CORR	ELAT	ION O	F COs	s WITI	H POs	and	PSOs	6						
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М										М	Н	L
CO2	Н	М										М	Н	L
CO3	Н	М										М	Н	L
CO4	Н	М	L									М	Н	L
CO5	Н	Н	Μ		Η						L	М	Н	L

UNIT I	BASIC CONCEPTS	g
Applica	action of DC Power transmission technology – Comparison of AC ation of DC transmission – Description of DC transmission system ission – Modern trends in DC transmission.	
UNIT I	ANALYSIS OF HVDC CONVERTERS	ę
Conve	number – Choice of converter configuration – Simplified analy rter bridge characteristics – Characteristics of a twelve pulse is of converters.	
UNIT I	II MULTI TERMINAL HVDC SYSTEMS	9
	of MTDC system – Comparison of series and parallel MTDC syste e insulators – DC breakers – Characteristics and types of DC break	
UNIT I	V REACTIVE POWER AND HARMONICS IN HVDC	ę
Source	s of reactive power - static VAR system - Reactive power con	
	ation of harmonics – Types and design of various DC filters – interf	erence telephone.
Gener	HVDC CABLES AND SIMULATION OF HVDC SYSTEMS	
Gener UNIT Introdu dielect cables		C insulation – Practica es compared with AC
Gener UNIT Introdu dielect cables	HVDC CABLES AND SIMULATION OF HVDC SYSTEMS Action of DC cables – Basic physical phenomenon arising in DC rics – Dielectric stress consideration – Economics of DC cable . Introduction to system simulation – Philosophy and tools – HVD	C insulation – Practica es compared with AC C system simulation -
Gener UNIT Introdu dielect cables Modeli	HVDC CABLES AND SIMULATION OF HVDC SYSTEMS Action of DC cables – Basic physical phenomenon arising in DC rics – Dielectric stress consideration – Economics of DC cable . Introduction to system simulation – Philosophy and tools – HVD	C insulation – Practica es compared with AC C system simulation -
Gener UNIT Introdu dielect cables Modeli	HVDC CABLES AND SIMULATION OF HVDC SYSTEMS And the provided and the provi	C insulation – Practica es compared with AC DC system simulation – TOTAL: 45 PERIODS
Gener UNIT Introdu dielect cables Modeli TEXT E	 HVDC CABLES AND SIMULATION OF HVDC SYSTEMS action of DC cables – Basic physical phenomenon arising in DC rics – Dielectric stress consideration – Economics of DC cable. Introduction to system simulation – Philosophy and tools – HVD ng of HVDC systems for digital dynamic simulation. BOOKS: Padiyar, K. R., "HVDC power transmission system", Wiley Eastern 	C insulation – Practica es compared with AC DC system simulation - TOTAL: 45 PERIODS In Limited, New Delhi
Gener UNIT Introdu dielect cables Modeli TEXT E 1. 2.	 HVDC CABLES AND SIMULATION OF HVDC SYSTEMS inction of DC cables – Basic physical phenomenon arising in DC rics – Dielectric stress consideration – Economics of DC cable. Introduction to system simulation – Philosophy and tools – HVD ring of HVDC systems for digital dynamic simulation. BOOKS: Padiyar, K. R., "HVDC power transmission system", Wiley Eastern Third Edition. 2015. S. Rao, "EHV-AC, HVDC Transmission and Distribution Engine 	C insulation – Practica es compared with AC DC system simulation - TOTAL: 45 PERIODS In Limited, New Delhi
Gener UNIT Introdu dielect cables Modeli TEXT E 1. 2. REFE	 HVDC CABLES AND SIMULATION OF HVDC SYSTEMS inction of DC cables – Basic physical phenomenon arising in DC rics – Dielectric stress consideration – Economics of DC cable. Introduction to system simulation – Philosophy and tools – HVD rig of HVDC systems for digital dynamic simulation. BOOKS: Padiyar, K. R., "HVDC power transmission system", Wiley Eastern Third Edition. 2015. S. Rao, "EHV-AC, HVDC Transmission and Distribution Engine 2013. 	C insulation – Practica es compared with AC DC system simulation - TOTAL: 45 PERIODS In Limited, New Delhi Pering", Third Edition.
Gener UNIT Introdu dielect cables Modeli EXT E 1. 2. REFE 1. 2.	 HVDC CABLES AND SIMULATION OF HVDC SYSTEMS inction of DC cables – Basic physical phenomenon arising in DC rics – Dielectric stress consideration – Economics of DC cable. Introduction to system simulation – Philosophy and tools – HVD rig of HVDC systems for digital dynamic simulation. BOOKS: Padiyar, K. R., "HVDC power transmission system", Wiley Eastern Third Edition. 2015. S. Rao, "EHV-AC, HVDC Transmission and Distribution Engine 2013. RENCE BOOKS: Colin Adamson and Hingorani N G, "High Voltage Direct Current 	C insulation – Practica es compared with AC OC system simulation – TOTAL: 45 PERIODS In Limited, New Delhi eering", Third Edition.

COURSE CODE:
1152EE109

COURSE TITLE: LOAD FORECASTING AND GENERATION FORECASTING

Т	Р	С
0	0	3

L

3

COURSE CATEGORY:

Program Elective

PREAMBLE :

This course aims to understand the concepts of load forecasting and generation forecasting

PREREQUISITE COURSES:

• Power System operation and control

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand basic concepts of load forecasting and load management
- Understand the energy demand forecasting and its planning

COURSE OUTCOMES :

COs	5			C	(B	nowled ased c oom's 1	on revi	sed						
CO1	1	Explain	Explain the load forecasting methods K2											
CO2	2	Summarize the Basics about energy management K2												
COS	3		Ilustrate the energy demand forecasting and its K2											
CO4	1	Explain studies						strateç	gy and	d case		ł	<2	
COS	5	Describ forecas		e plani	ning c	of ger	neratio	on de	pend	ing on		ł	٢2	
CORR	ELA		OF CO	s WIT	Н РО	s AN[D PSC)s						
COs CO1	РО Н	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		PSO1 H	PSO2
CO1	H	L					Н					M	H	
CO3	H	M				_						M	H	L
CO4	Н	М	М				L				L	М	Н	L
CO5	Η	Μ	М			М					L	М	Н	L
COURS	EC	ONTEN	IT:											
UNIT I	L	OAD F	OREC	ASTI	NG									9
methodo and We	UNIT I LOAD FORECASTING S Classification and characterization of loads - Approaches to load forecasting - Forecasting methodology - Energy forecasting - Peak demand forecasting - Nonweather sensitive forecast and Weather sensitive forecast - Total forecast - Annual and monthly peak demand forecasts - Applications of state estimation to load forecasting.													forecast
UNIT II													9	

Introduction to Load management - Electric energy production and delivery system structure (EEPDS) - Design alternatives for EEPD systems - Communication/control techniques for load management - Tariff structure and load management - principles of macro and microeconomics and energy pricing strategies - Assessing the impacts of load management. UNIT III **ENERGY DEMAND FORECASTING** 9 Static and dynamic analysis of energy demand - Elements of energy demand forecasting Methodologies and models for energy demand forecasting - Techno economic approach in energy demand forecasting - Energy auditing - Energy management Power Pools and Energy Banking. UNIT IV TRENDS AND CASE STUDIES 9 Energy management strategy - Symbiotic relation between information - Energy models and decision making - Case studies like industrial energy forecasting - Transportation energy forecasting - Residential, Commercial and agricultural energy forecasting UNIT V FORECASTING AND PLANNING 9 The role of forecasting in planning - comparison and selection of forecasting methods. The accuracy of forecasting methods - Pattern of the Data and its effects on individual forecasting methods - Time horizon effects on forecasting methods - Generation planning-fundamental economic analysis - Generation planning optimized according to generating unit categories distribution & transmission system planning **TOTAL: 45 PERIODS** TEXT BOOKS: 1. Power System Network Reduction Techniques – Dr.C.Radha Krishnan. Power quality- C.sankaran. Power system stability- Kundur. **REFERENCE BOOKS:** 1. Power system engineering – Rajput. Understanding the principles of power system harmonics- Arillaga, CRC publications **ONLINE RESOURCES:** 1. https://nptel.ac.in/courses/108105104

1152EI	CODE: E110		CO	URSE	TITL	E: LO	AD DI	SPAT	CHING	; –	L 3	т 0	P 0		С 3
COURSE	CATEG	ORY:									-	-			
Program E	lective														
PREAMBL	.E :														
This cours dispatch ce		to pi	rovide	the	knowl	edge	on ot	ojectiv	es, fun	ction a	and	loca	ation	of lo	ad
PREREQU	JISITE (COUR	SES												
Basic E	Electrica	ıl Engi	neerir	ng											
COURSE	EDUCA	TION	AL OE	BJEC	FIVES	;:									
The object	ives of t	he co	urse a	re to,											
• Un	derstand	d the h	asics	of inte	earate	now	er sve	stems							
	quire kn				U	•			dispate	h centi	res				
	niliar wi		•						•			oad	dispa	tch	
	ntres		•		J		J								
• Ga	in know	ledae	on tel	~~~~~	munia				tom on	eration	`				
		lougo		econn	nunica	ation i	n pow	er sys	stem op	ciuloi	1				
	derstand	U					•	-	•						
		d cont	ingeno				•	-	•						
• Uno		d cont	ingeno :	cies of	fopera	ating r	eserv	e and	its mai	ntenan	ce				
• Uno	оитсо	d cont	ingeno : comp	cies of	f opera	ating r	reserve se, stu	e and	its mai	able to	ce D: now ase	d or	ge Le n revis	sed	
Une COURSE Upon ti	оитсо	d conti MES essful	ingeno : comp C	cies of eletion	f opera of the e Oute	ating r e cours come	reserve se, stu s	e and	its mai	able to	ce D: now ase	d or	n revi axono	sed	
Un COURSE Upon t COs	OUTCO he succ	d conti MES essful the b	ingeno comp C asics	cies of eletion Cours e of inte	f operation of the e Outo	ating r e cours come d pow	se, stu se, stu s	e and idents tems	its mai	able to K (B Blo	ce D: now ase	d or 's Ta	n revi axono 2	sed	
Un	OUTCO he succ Outline Explain	d conti MES essful the b the b the b the b	ingend comp comp asics functi equip	cies of oletion course of inte ion ar ment a	f opera of the e Out e egrated and loo	ating r cours come d pow cation eneral	se, stu se, stu s er sys of lo arran	e and idents tems bad d	its main will be ispatch	able to K (B Blo	ce D: now ase	d or 's Ta K2	n revi axono 2 2	sed	
Un	OUTCO he succ Outline Explain centres	the base of the ba	ingend comp C asics functi equipi at loa	cies of oletion course of inte ion ar ment a d disp	of the e Oute grated nd loo and ge atch o	ating r come d pow cation eneral centre	se, stu se, stu s er sys of lo arran	e and idents tems pad d geme	its main will be ispatch nt of	able to K (B Blo	ce D: now ase	d or 's Ta K2 K2	axono 2 2 2	sed	
Un	OUTCO he succ Outline Explain centres Illustrat control Describ	the base of the ba	ingend comp comp asics of functi at loa e tele conting	cies of eletion course of inte ion ar ment a d disp ecomn	f opera of the e Outo egrated and loo and ge batch o nunica	ating r come d pow cation eneral centre ation	se, stu se, stu s er sys of lo arran s in po	e and idents tems bad d geme	its main will be ispatch nt of system	able to K (B Blo	ce D: now ase	d or /s Ta K2 K2 K2	2 2 2 2 2	sed	
Unit COURSE Upon t COs CO1 CO2 CO3 CO4 CO5 CORRELA	OUTCO he succ Outline Explain centres Illustrat control Descrit operati Explain mainten	the base of the ba	ingend comp comp asics functi at loa e tele conting	cies of oletion Course of inte ion ar ment a d disp ecomn gencie	f opera of the e Oute egrated and loc and ge batch o nunica es of c	ating r come d pow cation eneral centre ation operat	se, stu se, stu s er sys of lo arran s in po ing res Ds	e and idents tems bad d geme wer serve	its main will be ispatch nt of system and its	able to K (B Blo	ce now base bom'	d or s Ta K2 K2 K2 K2 K2	2 2 2 2 2 2 2	sed omy)	
Unit COURSE Upon t COs CO1 CO2 CO3 CO4 CO5 CORRELA Cos PO	OUTCO he succ Outline Explain centres Illustrat control Descrit operati Explain mainten TION C 1 PO2	the base of the ba	ingend comp comp asics functi at loa e tele conting	cies of oletion Course of inte ion ar ment a d disp ecomn gencie	f opera of the e Oute egrated and loc and ge batch o nunica es of c	ating r come d pow cation eneral centre ation operat	se, stu se, stu s er sys of lo arran s in po ing res Ds	e and idents tems bad d geme wer serve	its main will be ispatch nt of system	able to K (B Blo	ce now base bom'	d or s Ta K2 K2 K2 K2 K2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	sed omy)	
Unit COURSE Upon t CO3 CO3 CO4 CO5 CORRELA Cos PO CO1 H	OUTCO he succ Outline Explain centres Illustrat control Descrik operati Explain mainter ATION C 1 PO2 M	the base of the ba	ingend comp comp asics functi at loa e tele conting	cies of oletion Course of inte ion ar ment a d disp ecomn gencie	f opera of the e Oute egrated and loc and ge batch o nunica es of c	ating r come d pow cation eneral centre ation operat	se, stu se, stu s er sys of lo arran s in po ing res Ds	e and idents tems bad d geme wer serve	its main will be ispatch nt of system and its	able to K (B Blo	ce now base bom'	d or s Ta K2 K2 K2 K2 K2	revi axono 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	sed omy) PSC	
Uni COURSE Upon t CO3 CO3 CO4 CO5 CORRELA Cos PO CO1 H CO2 H CO2 H CO2 H CO3 CO4 CO5 CO7 CO CO	OUTCO he succ Outline Explain centres Illustrat control Descrik operati Explain mainten TION C 1 PO2 M M	the base of the constant of th	ingend comp comp asics functi at loa e tele conting	cies of oletion Course of inte ion ar ment a d disp ecomn gencie	f opera of the e Oute egrated and loc and ge batch o nunica es of c	ating r come d pow cation eneral centre ation operat	se, stu se, stu s er sys of lo arran s in po ing res Ds	e and idents tems bad d geme wer serve	its main will be ispatch nt of system and its	able to K (B Blo	ce now base bom'	d or s Ta K2 K2 K2 K2 K2	PSO1 H H	sed omy))2
Unit COURSE Upon t CO3 CO3 CO4 CO5 CORRELA Cos PO CO1 H	OUTCO he succ Outline Explain centres Illustrat control Descrik operati Explain mainter ATION C 1 PO2 M	the base of the ba	ingend comp comp asics functi at loa e tele conting	cies of oletion Course of inte ion ar ment a d disp ecomn gencie	f opera of the e Oute egrated and loc and ge batch o nunica es of c	ating r come d pow cation eneral centre ation operat	se, stu se, stu s er sys of lo arran s in po ing res Ds	e and idents tems bad d geme wer serve	its main will be ispatch nt of system and its	able to K (B Blo	ce now base bom'	d or s Ta Ka Ka Ka Ka Ka	revi axono 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	sed omy) PSC	

COURSE	CONTENT:	
UNIT I	INTRODUCTION	9
Reduction	nent of integrated Power Systems - Benefits of operation of integrated Power Systems - Benefits of operation of integration in generating capacity due to the diversity of load demands increase in the size of generating sets.	
UNIT II	OBJECTIVES, FUNCTION AND LOCATION OF LOAD DISPATCH CENTRES	9
	s- Load dispatch centres and control centres - Function of the main of the main of the main of a power systems – Aspects of the operational plates of the operational plates are specified.	
UNIT III	FACILITIES AT LOAD DISPATCH CENTRES	9
	nt and General arrangement - Building, Control room - Mosaic D g of control room and facilities of control room	iagram - Mimic Board -
UNIT IV	TELECOMMUNICATIONS IN POWER SYSTEM OPERATION	9
communi	Felecommunications in power system operation – Vario cation media - PLCC, Radio Circuits, Leased Telephone Circ Communication - Communication systems.	
UNIT V	DETERMINATION OF OPERATING RESERVE	9
	of operating Reserve - Contingencies of operating reserve-Ger enance - Problems of operating reserves.	eral practice regarding
		TOTAL: 45 PERIODS
TEXT BO	DKS:	
	ower System Network Reduction Techniques – Dr.C.Radha Kris ower system stability- Kundur.	hnan.
REFERE	NCE BOOKS:	
1. Po	ower system engineering – Rajput.	
	nderstanding the principles of power system harmonics- Arillaga dvanced load dispatch for power systems- Mariani.E, Murthy.S.S	•

	COU	RSE					C	OURS		E:			L	Т	Ρ	С
CO	DE:11	52EE1	44			REAC	TIVE	POWE	R MA	NAGEN	IENT		3	0	0	3
	COURSE CATEGORY: Program Elective															
PREAM	BLE	:														
It is aim	ned to	provide	e the ii	nporta	ance of	f reacti	ve pov	ver in o	electric	c power	networ	k.				
PRERE	QUIS	TE CC	URSI	ES:												
٠	Circuit	Analy	sis													
•	Transı	missior	n and	Distrib	ution											
COURS	SE ED	UCATI	ONAL	OBJ	ECTIV	ES :										
The obj	ective	s of the	e cour	se are	to,											
COURS	Impart Descri Under Illustra SE OU	bing th lying th ating re TCOM	rious t ne effe ne imp active ES :	ypes c ct of re ortanc powe	f reactive eactive e of F r coord	e powe ACTS dinatio	r for H device n syste	VDC s s em for	ystem renew	s able en	ergy sys	system	IS			
Upc	on the	succes	STUI C	omplet	ion of	the co	urse, s	studen	is will i	be able		<u> </u>				
CO Nos.				(Course	e Outo	omes				(E	(nowled Based c oom's T	on re	vis	ed	
CO1		ghlight ntrol in				reactiv	ve pow	er and	l volta	ge		ł	(2			
CO2	tra	plain tl Insmise	sion sy	/stems	6	-						ł	<2			
CO3	sy	plain tl stems				•				ssion		ł	<2			
CO4	-	ecify tl plicatio	-	ortan	ce of F	ACTS	device	es and	its			ł	<2			
CO5		dicate t newabl				e pow	er in g	rid cor	necte	d		ł	(2			
CORRE	ELATI	ON OF	COs	WITH	POs A		SOs									
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12)1	PSC)2
CO1	H												H		<u> </u>	
CO2 CO3	M			M	L							L	H H		 	-
CO3	L		L	L	L				<u> </u>	L		L	H		 	\neg
CO5	L		L	L	L					M		L	H		L	

COURSE C	CONTENT:	
UNIT I	INTRODUCTION	9
Voltage Co and Reactiv	to Reactive Power – Analogy Examples – Sources and Sinks of Reacting ntrol through Static and Dynamic sources of Reactive Power – Different typ ve Power Consumption – Procedure for Controlling Voltage and Reactive Power factor Improvement.	es of Loads
UNIT II	EFFECT OF REACTIVE POWER ON GENERATION AND TRANSMISSION	9
line model control - S	Reactive power capability curve - Synchronous condenser - Introduction to – Surge impedance loading –Thermal loading of transmission lines – Method hunt reactors and reactive power control – Series and shunt capacitors – ries and shunt compensation – OLTC effect on reactive power.	ds of voltage
UNIT III	EFFECT OF REACTIVE POWER ON HVDC SYSTEMS	9
	to HVDC –Effects on reactive power - Voltage source converters – Interact pring HVDC systems – HVDC Bi-pole configuration – HVDC Back to Back con	
UNIT IV	ROLE OF FACTS DEVICES	9
Switched S	Converter based compensators – STATCOM – Series connected controllers Series Capacitor (TSSC) - Thyristor Controlled Series Capacitor (TCSC) eries Reactor (TSSR) – Thyristor Controlled Series Reactor (TCSR).	•
UNIT V	REACTIVE POWER MANAGEMENT FOR RENEWABLE ENERGY SYSTEMS	9
capabilities capability o power supp	ower influence on voltage and transient stability – Reactive power requir for wind generators – Capability Curves – Various control objectives – Rea f solar PV generator – Control schemes in inverter circuit in solar PV system ort – Reactive power support devices – Control strategies for reactive power r e energy systems	active power 1 for reactive
	TOTAL: 4	5 PERIODS
	are, Reactive power Management, Tata McGraw Hill, 2004. Power Management – A resource handbook, National Load Dispatch Centre	e, New Delhi,
REFEREN	CE BOOKS:	
2. Mohamn Grids: A	r, Reactive Power Control in Electric Power Systems, John Wiley and Sons, 19 nad Nazmul Islam Sarkar et al., "Reactive Power Management in Renewable Review Grid Codes, Renewable Generators, Support Devices, Control Str tion Algorithms", IEEE Access, 2018, DOI : 10.1109/ACCESS.2018.2838563	Rich Power

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Program Elective

PREAMBLE :

This course forms the basis for understanding the types and fabrication of LEDs also it aims to discuss about the significance of driver circuits used in LED lighting system. The control strategies used in lighting of LED based systems are discussed so as to provide knowledge in design and analysis of LED based system. Lastly, the course also provides basic hands on exposure on assembly techniques for developing LED based products

PREREQUISITE COURSES: Power Electronics & Drives

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- State the need for Illumination.
- Define good Illumination.
- State what comprises an electric utility?
- List standard voltage levels.
- Power electronics as applied to LED technology
- Define the aspects of design of lighting systems
- Maintain the lighting systems
- Fault rectification of lighting systems

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain the fundamental elements, laws and quantities of illumination and optical design	K2
CO2	Explain about LED lighting, types of lightings	K2
CO3	Identify the constructional features, parts and working of illumination systems	K2
CO4	Discuss and design the types and working of power electronic circuits used in LED technology	K3
CO5	Develop the Lighting control strategies, building lighting control systems and applications Design and fabricate PCB for LED lighting system, repair, maintenance of LED systems	КЗ

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ		Η					М						
CO2		М				М								
CO3	Н		М					Μ		М				Н

CO4					М									М	Τ
CO5		L		М							М			Н	
COURS	E CO	NTEN	IT:												
UNIT I	LIC	GHT A	ND IL	LUM	INATI	ON									9
Basics Charact - Charac Demerit	cterist	ions, (iics ab	Classi out Li	ficatic ght -	on of F Light a	and Vi	netry & sion -	& Phot Evolu	ometr tion of	Lighti	ural & ng Teo	chnolog	al Light gies - N		es
UNIT II	LE	D TEC	CHNO	LOG	Y										9
Physics Types o Parame Measure	f LED ters)'s - E: - Soli	xperin	nenta	I Proc	edures	s for d	leterm	inatior	n of the	Char	acterist	tics - Ŵ	/hite Ll	ED
UNIT III	PC	WER	ELEC	CTRO	NICS	FOR	LED L	IGHT	NG						9
LED Dri Buck-Bo Switchin vs 2-Sta	oost, ig driv	Sepic /ers -	& Fl AC-D	y-bac C Driv	k) - I vers, I	Driving mporta	g opti ance d	ons - of Pow	Discr er Fa	ete ba ctor Co	sed o	drivers,	Linea	r drive	rs,
UNIT IV	LIC	GHT P	OWE	R & C	ONT	ROL									9
Lighting dimming suppres by comp control, Status in application	i con sion t outer, archi monite	itrol a echnic simple tectura	llgorith ques. e mult al & t	nm, h Impae ti-cha puildir	narmoi ct of li nnel 8 ng ligh	nics, ghting a large nting a	El fro contr multi contro	om lig ol, pro -chani I syste	hting itocols nel cor ems; (equipn for ligi ntrol, s Central	hent hting o tage 8 ised v	– its r control; & enter vs. dist	neasur Lightir tainmer tributec	ement ng cont nt lighti I syste	& rol ing m;
		D MA	NUFA	CTU	RING	TECH	NOLO	DGY							9
Design technolo Hand So ADVAN	ogy – olderii	Scree ng, SN	n prin /ID RE	ting, F WOF	Pick & RK & F	place Repair,	Mach Dispe	nines p ensing	rograr , Coat	nming ing, pro	& pra	ctice, F on Optio	Reflow s onal		
												ΤΟΤΑ	L: 45 P	PERIO)S
ТЕХТ ВС	OKS):													
F	Publis	hing H	louse						d App Iblishe		is, Am	ar K.G	anguly,	Naros	a
REFER															
		BOO	KS:												

COURSE TITLE: FLEXIBLE AC TRANSMISSION SYSTEMS

L	Т	Р	С
3	0	0	3

COURSE CATEGORY:

Program Elective

PREAMBLE :

This course will describe about basic concepts, different types, scope and applications of FACTS controllers in power transmission system

PREREQUISITE COURSES:

o Power electronics & Drives

RELATED COURSES:

o Electric Circuit Theory, Power System, Power electronics, Digital electronics

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Know the importance of compensation in transmission lines and the concepts of FACTS devices.
- Illustrate the design, modeling and applications of SVC.
- Familiar with the operation, modes, modeling and applications of TCSC.
- Study the principle, characteristics, modeling and applications of STATCOM and SSSC.
- Summarize about the importance in coordination of FACTS controllers.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain the basic fundamental of FACTS controllers	K2
CO2	Summarize about Static VAR Compensators	K2
CO3	Explain about Modeling, Operation and control strategies of Static series compensation-SVC	K2
CO4	Explain the voltage source based FACTS controllers	K2
CO5	Explain the modeling and design of Coordinating multiple FACTS controllers using control techniques	K2

CORRELATION OF COS WITH POS AND PSOS

COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L									Γ	М	Н	L
CO2	Н	L	L								Γ	М	Н	L
CO3	Н	L	L								Γ	М	Н	L
CO4	Н	L	L								Γ	М	Н	L
CO5	Н	L	L								Γ	М	Н	L

	E CONTENT:							
UNIT I	INTRODUCTION TO FACTS		9					
- Power	 power control in electrical power transmission lines –Uncompen Flow in AC System – relative - importance of controllable paran possible benefits for FACTS. 							
UNIT II	STATIC VAR COMPENSATOR (SVC) AND APPLICATIONS		9					
series o	r compensation – introduction to shunt & series compensation - compensation – configuration & operating characteristics, Static operation and control.							
UNIT III	SERIES COMPENSATION AND APPLICATIONS		9					
Variable	eries compensation: TSSC - Modeling, Operation and contre- reactance model –Applications: Improvement of the systement of system damping.							
UNIT IV	UNIT IV VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS							
Applicat voltage	ynchronous Compensator (STATCOM) – Principle of operation ions: Steady state power transfer-Enhancement of transient s instability - SSSC-operation of SSSC and the control of power flo low and transient stability studies.	tability - Prever	ntion of					
UNIT V	INIT V CO-ORDINATION OF FACTS CONTROLLERS							
basic op	tion to Unified Power Flow Controller (UPFC) & Interline Power F perating principles UPFC – introduction to sub synchronous Reson controllers using linear control techniques. Introduction to ng.	nance - Coordin	ation of					
		TOTAL: 45 PE	RIODS					
ТЕХТ ВС	OKS:							
-	Narain G. Hingorani and Laszlo Gyugyi, "Understanding FA Fechnology of Flexible AC Transmission Systems", Standard F 2001.		to ond					
2.	R. Mohan Mathur and Rajiv K. Varma, "Thyristor Based FACTS							
	Transmission Systems", Wiley Inter science Publications, 2002	Controller for E	/ Delhi,					
-		Controller for E	/ Delhi,					
REFER 1.	Transmission Systems", Wiley Inter science Publications, 2002		/ Delhi,					
REFER 1. 2.	Transmission Systems", Wiley Inter science Publications, 2002 ENCE BOOKS: Padiyar K.R.," FACTS Controllers in Power Transmission and nternational (P) Limited, Publishers, New Delhi, 2008. Narain G. Hingorani, "Flexible AC Transmission", IEEE Spectrum,	Distribution", Ne April 1993, 40-/	/ Delhi, lectrical ew Age 45					
REFER 1. 2. 3.	Transmission Systems", Wiley Inter science Publications, 2002 ENCE BOOKS: Padiyar K.R.," FACTS Controllers in Power Transmission and International (P) Limited, Publishers, New Delhi, 2008.	Distribution", Ne April 1993, 40-/	/ Delhi, lectrical ew Age 45					
REFER 1. 2. 3. 4.	Transmission Systems", Wiley Inter science Publications, 2002 ENCE BOOKS: Padiyar K.R.," FACTS Controllers in Power Transmission and International (P) Limited, Publishers, New Delhi, 2008. Narain G. Hingorani, "Flexible AC Transmission", IEEE Spectrum, Narain G. Hingorani, "High Power Electronics in Flexible AC Tran	Distribution", Ne April 1993, 40- smission", IEEE ots for design of	/ Delhi, lectrical ew Age 45 E Power FACTS					

COURSE TITLE: MODERN POWER CONVERTERS

L	Т	Р	С
3	0	0	3

COURSE CATEGORY:

Program Elective

PREAMBLE :

In this course student will get exposure to basic principle of operation, structure, characteristics of power converters.

PREREQUISITE COURSES:

Power Electronics & Drives

RELATED COURSES:

Solid state AC & DC drives, Advanced Semiconductor Devices

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Explaining about the Single phase bridge rectifiers with RL, RLE loads & effect of source impedance
- Explaining about the three phase bridge rectifiers with RL, RLE loads & effect of source impedance
- Teaching about design and analysis of dc -dc converters
- Presentation on single-phase bi-directional controllers with R, L and R-L loads, 3-phase controllers.
- Explicate the single phase and three phase cycloconverters.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain the types loads with single phase thyristor controlled converter.	K2
CO2	Describe the operation, characteristics and performance parameters three phase thyristor controlled converter.	K2
CO3	Identify the types of dc-dc converters.	K2
CO4	Explain the single-phase bi-directional controllers with R, L and R-L loads & 3-phase controllers	K2
CO5	Describe the principle of operation of single phase and three phase Cycloconverters	K2

CORRELATION OF COS WITH POS AND PSOs

COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L										L	Н	L
CO2	Н	Μ	L										Н	L
CO3	Н	Μ	L										Н	
CO4	Н	Μ	L									L	Н	L
CO5	Н	L											Н	

COURSE	CONTENT:	
UNIT I	SINGLE PHASE AC TO DC CONVERTERS	9
loads, fre Input ha	hase bridge rectifiers, half controlled and Fully controlled con ewheeling diodes, Dual Converter, sequence control of conver monics and output ripple, smoothing inductance-power fa- ce and overlap ,reactive power and power balance in converter	ters-inverter operation, ctor, effect of source
UNIT II	THREE PHASE AC TO DC CONVERTERS	9
Converte	d Fully controlled converters with R, RL, RLE loads, freev , sequence control of converters-inverter operation, Input harmon g inductance-power factor, effect of source impedance an	onics and output ripple,
UNIT III	DC TO DC CONVERTERS	9
choppers	of operation, choice of communication circuit elements, Ste , classification, Voltage and current commutated choppe e, Filter circuits, multiphase chopper, resonant converters.	
UNIT IV	AC VOLTAGE CONTROLLERS	9
	of phase control, single-phase bi-directional controllers with F ntrollers, different configurations, Analysis with pure R and L loa	
UNIT V	CYCLOCONVERTERS	9
•	of operation, single phase and three phase cyclo converters, Po armonics and analysis of power factor	wer circuits, gating
		TOTAL: 45 PERIODS
TEXT BO	DKS:	
	ashid M.H., "Power Electronics Circuits, Devices and Applicatior dia, Second Edition, New Delhi, 1995.	is ", Prentice Hall
	C Sen.," Modern Power Electronics ", Wheeler publishing Co, F 198.	irst Edition, New Delhi-
REFERE	NCE BOOKS:	
	ohan N., Undeland and Robbins, "Power Electronics-Converte esign ", John Wiley and sons, Inc., New York, 1995.	ers ", Applications and
ONLINE	RESOURCES:	

COURSE CODE:
1152EE114

COURSE TITLE: AUTOMOTIVE ELECTRICAL & ELECTRONIC SYSTEMS

Т	Ρ	С
0	0	3

L

3

COURSE CATEGORY:

Program **Elective**

PREAMBLE :

The course is aimed at imparting fundamental knowledge about the electrical layout and to understand the various sensors and related control system assembly within an automobile.

PREREQUISITE COURSES:

Basic Electronics Engineering, Basic Mechanical Engineering

RELATED COURSES:

Automobile Engineering, Electrical Machines

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Introduce the basic layout of an automotive electrical system
- Introduce about the Starting and Charging systems of a vehicle.
- Introduce about the Sensors and Actuators used in an Automobile.
- Introduce about the control systems within a vehicle.
- Introduce about the basic management system within a vehicle.

COURSE OUTCOMES :

CO Nos.				С	ourse	Outc	omes				Knowledge Level (Based on revised Bloom's Taxonomy)				
C01		nphasi stems		e basic	ectrical	K2									
C02		Illustrate the problems behind the drives employed in a k2 k2													
C03	Re	Relate the sensor arrangements in a vehicle K2													
C04	E>	Explain the control strategies on a vehicle										K2			
C05		utline t anagei	•			be con	trolled	d for th	ie Eng	jine		К2			
CORR	ELAT	ION O	F CO:	s WITI	H POs	AND	PSOs	5							
COs	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	H	Μ	L									L	Н	L	
CO2	Н	Μ	L									L	Н	L	
CO3	H	Μ	L	L								L	Н	L	
CO4	Η	Μ	L	L								L	Н	L	
CO5	Η	М	L	L								L	Η	L	

COURS	E CONTENT:	
UNIT I	INTRODUCTION TO AUTOMOTIVE ELECTRICAL SYSTEM	9
Circuit d	ive Electrical Layout, Automotive component operation, Elect diagrams and symbols On Board Diagnostics, Dash Board , Fault Diagnosis and troubleshooting.	
UNIT II	STARTING & CHARGING SYSTEMS	9
principle	n at starting, behavior of starter during starting, series motor a and construction of starter motors& driving mechanism, D.C. Ge ance of Drives- Regulation for Charging, lighting lamps and Fuses	nerator and Alternator-
UNIT III	AUTOMOTIVE SENSORS	9
Position Tempera	ion, Basic Sensor Arrangement, Types of sensors, Oxygen Sen Sensor, Engine cooling water Sensor, engine oil pressure ature and humidity sensor, Speed and Acceleration sensor, k Yaw rate sensors	sensor, Flow sensor,
UNIT IV	AUTOMOTIVE CONTROL SYSTEMS	9
Control	ive microcontrollers, Engine Control Systems, Transmission C System, Braking Control System, Traction Control System, Sta ion Control System, Steering Control System	
UNIT V	ENGINE MANAGEMENT SYSTEM	9
loop Cor	Construction & stroke Classification-Sensor arrangements in Enginetrol, engine cooling and warm up control, acceleration, detonation exhaust emission control engineering	
		TOTAL: 45 PERIODS
ТЕХТ ВО	OKS:	
	Jnderstanding Automotive Electronics", by Mr. William B. Ribbens Iansour, Elsevier, 2012	s, Norman P.
2. "/	Automotive Electrical Equipment" by Mr.P L Kohli, Tata McGraw-ł	Hill Education, 2004.
	Automobile Electrical and Electronics Systems", by Mr. Tom Dent April 9, 2012)	on, Elsevier, 4 edition
REFERE	ENCE BOOKS:	
	obert Bosch-: Automotive Handbook- SAE- 2011 Edition I.	
2. C	r. Kirpal Singh -: Automobile Engineering, standard publishers , \	/ol- 1and Vol- 2, -2012
	udge- A.W: Modern Electrical Equipment of Automobiles- Chap	man and Hall-
L	udge- A.w: Modern Electrical Equipment of Automobiles- Chap ondon- 2011. R.K. Jurgen- Automotive Electronics Handbook- McGraw Hill 2ndl	

COURSE CODE: 1152EE115

COURSE TITLE: FUNDAMENTALS OF ELECTRIC & HYBRID VEHICLES

L	Т	Р	С
3	0	0	3

COURSE CATEGORY:

Program **Elective**

PREAMBLE :

This course aims in providing the fundamental knowledge on electric and hybrid power trains, principle of regenerative braking and environmental advantages of electric & hybrid vehicles.

PREREQUISITE COURSES:

Basic Electrical & Electronics Engineering, Basic Mechanical & Construction Engineering

RELATED COURSES:

Electrical Machines

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Impart the knowledge on vehicle propulsion principle
- Understand the electric vehicles and its powertrains
- Get fundamental knowledge on hybrid electric vehicles
- Understand regenerative braking in electric vehicles
- Know the advantages of electric vehicles in various environment

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
C01	Enumerate the principle of vehicle propulsion and braking.	K2
C02	Outline the principle & performance of an electric vehicle.	K2
C03	Illustrate the working principle of a Hybrid Electric Vehicle.	K2
C04	Explain the braking system of EV, HEV and FCV.	K2
C05	Articulate the effects of electric and hybrid vehicles on environment	K2

CORRELATION OF COS WITH POS AND PSOs

COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Μ	L			L					Μ	М	Н	М
CO2	Н	Μ	L			L					Μ	М	Н	М
CO3	Н	Μ	L			L					Μ	М	Н	М
CO4	Н	Μ	L			L					Μ	М	Н	М
CO5	Н	М	L			L	М				Μ	М	Н	М

UNIT	I	FUNDAMENTALS OF VEHICLE PROPULSION	9
Train	Tra	Description of Vehicle Movement - Vehicle Resistance - Dyna active Effort and Vehicle Speed - Vehicle Power Plant and Trans Performance - Operating Fuel Economy - Brake Performance	
UNIT	II	ELECTRIC VEHICLE& PROPULSION SYSTEMS	9
and T Energ	Гrar ју С	ations of EVs - Performance of EVs - Traction Motor Characters Insmission Requirement - Vehicle Performance - Tractive Eff Consumption - Principle of Operation and Performance - DC M ives - Permanent Magnet BLDC Motor Drives - SRM Drives	ort in Normal Driving-
UNIT	III	HYBRID ELECTRIC VEHICLES	9
	oina	pes of HEVs-Series & Parallel HEVs-Advantages & Disadvanta tion - Design of an HEV - Hybrid Drive trains - sizing of comp	
UNIT	IV	REGENERATIVE BRAKING	9
Energ		Energy Consumed in Urban Driving - Braking Energy versus Versus Braking Power - Braking Energy versus Braking Power -	
		Deceleration Rate - Braking Energy on Front and Rear Axles d FCV - Parallel Hybrid Braking System - Fully Controllable Hybri	
	anc		
HEV, UNIT Vehicl Conte Fueled	anc V le F ext - d V	d FCV - Parallel Hybrid Braking System - Fully Controllable Hybri	id Brake System 9 is - Vehicle Pollution in Sustainable Energy with
HEV, UNIT Vehicl Conte Fueled	anc V le F ext - d V	d FCV - Parallel Hybrid Braking System - Fully Controllable Hybrid ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysic Alternative and Sustainable Energy Used via the Grid - Using S /ehicles - The Role of Regulations and Law Makers - Case	id Brake System 9 is - Vehicle Pollution in Sustainable Energy with
HEV, UNIT Vehicl Conte Fueled batter	anc V le F ext - d V ry ve	d FCV - Parallel Hybrid Braking System - Fully Controllable Hybrid ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysic Alternative and Sustainable Energy Used via the Grid - Using S /ehicles - The Role of Regulations and Law Makers - Case	id Brake System 9 is - Vehicle Pollution in Sustainable Energy with study of rechargeable
HEV, UNIT Vehicl Conte Fueled batter	anc V le F ext - d V y ve	D FCV - Parallel Hybrid Braking System - Fully Controllable Hybrid ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysic Alternative and Sustainable Energy Used via the Grid - Using S /ehicles - The Role of Regulations and Law Makers - Case ehicles.	id Brake System 9 is - Vehicle Pollution in Sustainable Energy with study of rechargeable TOTAL: 45 PERIODS
HEV, UNIT Vehicl Conte Fueled batter TEXT	anc V le F ext d V y ve BC	DEFECT - Parallel Hybrid Braking System - Fully Controllable Hybrid ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysic Alternative and Sustainable Energy Used via the Grid - Using S /ehicles - The Role of Regulations and Law Makers - Case ehicles. DOKS:	id Brake System 9 is - Vehicle Pollution in Sustainable Energy with study of rechargeable TOTAL: 45 PERIODS press; 2011 Jun 27.
HEV, UNIT Vehicl Conte Fueled batter TEXT 1. 2.	anc V le F ext - d V y ve BC He La W El	d FCV - Parallel Hybrid Braking System - Fully Controllable Hybrid ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysic Alternative and Sustainable Energy Used via the Grid - Using S /ehicles - The Role of Regulations and Law Makers - Case ehicles. DOKS: usain I. Electric and hybrid vehicles: design fundamentals. CRC arminie, James, and John Lowry. "Electric vehicle technology ex	id Brake System 9 is - Vehicle Pollution in Sustainable Energy with study of rechargeable TOTAL: 45 PERIODS press; 2011 Jun 27. plained, 2003." John wid electric, and fuel
HEV, UNIT Vehicl Conte Fueled batter TEXT 1. 2. 3.	anc V le F ext - d V y ve BC He La W El ce	d FCV - Parallel Hybrid Braking System - Fully Controllable Hybrid ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysic Alternative and Sustainable Energy Used via the Grid - Using S /ehicles - The Role of Regulations and Law Makers - Case ehicles. DOKS: usain I. Electric and hybrid vehicles: design fundamentals. CRC arminie, James, and John Lowry. "Electric vehicle technology ex /iley&Sons, Ltd. hsani, Mehrdad, Yimin Gao, and Ali Emadi. Modern electric, hyb	id Brake System 9 is - Vehicle Pollution in Sustainable Energy with study of rechargeable TOTAL: 45 PERIODS press; 2011 Jun 27. plained, 2003." John wid electric, and fuel
HEV, UNIT Vehicl Conte Fueled batter 1. 2. 3. REFE	anc V le F ext - d V y ve BC H La W El ce El El	d FCV - Parallel Hybrid Braking System - Fully Controllable Hybrid ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysic Alternative and Sustainable Energy Used via the Grid - Using S /ehicles - The Role of Regulations and Law Makers - Case ehicles. DOKS: usain I. Electric and hybrid vehicles: design fundamentals. CRC arminie, James, and John Lowry. "Electric vehicle technology ex /iley&Sons, Ltd. hsani, Mehrdad, Yimin Gao, and Ali Emadi. Modern electric, hyb ell vehicles: fundamentals, theory, and design. CRC press, 2009	id Brake System 9 is - Vehicle Pollution in Sustainable Energy with study of rechargeable TOTAL: 45 PERIODS press; 2011 Jun 27. plained, 2003." John orid electric, and fuel
HEV, UNIT Vehicl Conte Fueled batter 1. 2. 3. REFE 1.	anc V le F ext - d V y Ve BC Hu La W El ce En 20	d FCV - Parallel Hybrid Braking System - Fully Controllable Hybrid ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysic Alternative and Sustainable Energy Used via the Grid - Using S /ehicles - The Role of Regulations and Law Makers - Case ehicles. OOKS: usain I. Electric and hybrid vehicles: design fundamentals. CRC arminie, James, and John Lowry. "Electric vehicle technology ex /iley&Sons, Ltd. hsani, Mehrdad, Yimin Gao, and Ali Emadi. Modern electric, hyb ell vehicles: fundamentals, theory, and design. CRC press, 2009 SNCE BOOKS: madi, Ali, ed. Handbook of automotive power electronics and motion	id Brake System 9 is - Vehicle Pollution in Sustainable Energy with study of rechargeable TOTAL: 45 PERIODS press; 2011 Jun 27. plained, 2003." John orid electric, and fuel . otor drives. CRC press,
HEV, UNIT Vehicl Conte Fueled battery TEXT 1. 2. 3. REFE 1. 2.	anc V le F ext - y ve d V y ve BC Hr La W El ce Sc Sc Sc	 d FCV - Parallel Hybrid Braking System - Fully Controllable Hybrid ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysis - Alternative and Sustainable Energy Used via the Grid - Using S / ehicles - The Role of Regulations and Law Makers - Case ehicles. DOKS: usain I. Electric and hybrid vehicles: design fundamentals. CRC arminie, James, and John Lowry. "Electric vehicle technology ex //iley&Sons, Ltd. hsani, Mehrdad, Yimin Gao, and Ali Emadi. Modern electric, hyb ell vehicles: fundamentals, theory, and design. CRC press, 2009 ENCE BOOKS: madi, Ali, ed. Handbook of automotive power electronics and motions. 	id Brake System 9 is - Vehicle Pollution in Sustainable Energy with study of rechargeable TOTAL: 45 PERIODS press; 2011 Jun 27. plained, 2003." John orid electric, and fuel . botor drives. CRC press, ech, 2011.
HEV, UNIT Vehicl Conte Fueled batter 1. 2. 3. REFE 1. 2. 3.	and V le F ext - y ve BC H La W El Ce Sc Sc C	 d FCV - Parallel Hybrid Braking System - Fully Controllable Hybrid ELECTRIC VEHICLES & ENVIRONMENT Pollution: the Effects - Vehicles Pollution: a Quantitative Analysis Alternative and Sustainable Energy Used via the Grid - Using S /ehicles - The Role of Regulations and Law Makers - Case ehicles. DOKS: usain I. Electric and hybrid vehicles: design fundamentals. CRC arminie, James, and John Lowry. "Electric vehicle technology ex /iley&Sons, Ltd. hsani, Mehrdad, Yimin Gao, and Ali Emadi. Modern electric, hyb ell vehicles: fundamentals, theory, and design. CRC press, 2009 ENCE BOOKS: madi, Ali, ed. Handbook of automotive power electronics and motions. oylu, Seref, ed. Electric Vehicles: The Benefits and Barriers. InTerpolut, Seref. "Electric Vehicles-Modelling and Simulations" Ir 	id Brake System 9 is - Vehicle Pollution in Sustainable Energy with study of rechargeable TOTAL: 45 PERIODS press; 2011 Jun 27. plained, 2003." John orid electric, and fuel . botor drives. CRC press, ech, 2011.

COURSE CO	DE:
1152EE11	6

COURSE TITLE: SPECIAL ELECTRICAL MACHINES

L	Т	Ρ	С
3	0	0	3

COURSE CATEGORY:

Program Elective

PREAMBLE :

This course exposes the students to the construction, principle of operation and performance of special electrical machines as an extension to the study of AC & DC electrical machines.

PREREQUISITE COURSES:

Basic Electrical Engineering, DC Machines and Transformers, AC Machines

RELATED COURSES:

AC Machines, DC Machines & Transformers

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

• Familiar with the Construction, principle of operation and performance of synchronous reluctance motors, stepping motors, switched reluctance motors, permanent magnet brushless D.C. motors, permanent magnet synchronous motors.

COURSE OUTCOMES :

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's taxonomy)
CO1	Explain the Construction, principle of operation and performance of synchronous reluctance motors.	K2
CO2	Outline the control scheme for stepper motors	K2
CO3	Summarize the performance characteristics and control of switched reluctance motors	K2
CO4	Illustrate the operation and control of permanent magnet brushless D.C. motors.	K2
CO5	Interpret operating characteristics of permanent magnet synchronous motors.	K2
CORRE	ELATION OF COS WITH POS AND PSOS	

00111															
COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	Н		L								L	L	М	L	
CO2	Н		L								L	L	М	L	
CO3	Н		L								L	L	М	L	
CO4	Н		L								L	М	М	L	
CO5	Н		L								L	L	М	L	

COURSE CO	NTENT:	
UNIT I	SYNCHRONOUS RELUCTANCE MOTORS	9
	I features – Types – Axial and Radial flux motors – Operating principle nd Hybrid Motors – SYNREL Motors – Voltage and Torque Equation racteristics.	
UNIT II	STEPPER MOTOR	9
Single and	I features – Principle of operation – Variable reluctance motor – Hyb multi stack configurations – Torque equations – Modes of ex s – Drive circuits – Microprocessor control of stepper motors – C	citations -
UNIT III	SWITCHED RELUCTANCE MOTORS	9
- Steady sta	I features – Rotary and Linear SRMs - Principle of operation – Torque ate performance prediction- Analytical method -Power Converters lethods of Rotor position sensing – Sensorless operation – Closed loc teristics.	and their
UNIT IV	PERMANENT MAGNET BRUSHLESS D.C. MOTORS	9
operation - T	agnet materials – Magnetic Characteristics – Permeance coefficient - ypes – Magnetic circuit analysis – EMF and torque equations –Con lers – Motor characteristics and control.	
UNIT V	PERMANENT MAGNET SYNCHRONOUS MOTORS	9
Synchronous	peration – Ideal PMSM – EMF and Torque equations – Armature reaction Reactance – Sinewave motor with practical windings - Phasor diagram characteristics - Power controllers - Converter Volt-ampere requireme	_
	TOTAL: 45	5 PERIODS
TEXT BOOK	S:	
	Miller, 'Brushless Permanent Magnet and Reluctance Motor Drives', Cl Oxford, 1989.	arendon
	enjo, 'Stepping Motors and Their Microprocessor Controls', Clarendon n, 1984.	Press
REFERENCE	BOOKS:	
1. R.Kris Desigr	nnan, 'Switched Reluctance Motor Drives – Modeling, Simulatior	n, Analysis,

COURSE TITLE: ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY

L	Т	Ρ	С
3	0	0	3

COURSE CATEGORY:

Program Elective

PREAMBLE :

To make the student understand electromagnetic interference and compatibility

PREREQUISITE COURSES:

Electromagnetic Theory

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand the EMC regulation and methods of eliminating interferences
- Familiar with the Methods of grounding of cable shield
- Understand the concept of filtering and shielding
- Impart knowledge on types of digital circuit noises
- Understand the electrostatic discharge and standards.

COURSE OUTCOMES :

CO Nos		Course Outcomes (Based on revised Bloom's Taxonomy)												sed
CO	1	Explain the EMC regulation and methods of eliminating K2												
CO2	2	Explair	n the M	lethoc	ls of g	round	ing of	cable	shield				K2	
COS	3	Descrit	be the	conce	ept of f	iltering	g and	shield	ing			l	K2	
CO4	1	Outline	the ty	vpes o	f digita	al circu	uit nois	ses				l	K2	
CO	5	Illustra standa		ut the	electr	ostatio	c disch	narge a	and				K2	
CORR	ELA		F CO	s WITI	H POs	s AND	PSO	5						
Cos	PO	1 PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L		L								L	Μ	
CO2	Н										L		Μ	
CO3	Н	Н									L		М	
CO4	Н		Μ									L	Μ	
CO5	Н	Н		Η								L	Μ	
COUR	SE C		NT:											
UNIT I	IN	TRODI	JCTIO	N										9
Source	s of	EMI,	Cond	ucted	and	radia	ted ir	terfer	ence	- Chai	acteris	tics -	Design	ing for

electromagnetic compatibility (EMC) - EMC regulation- typical noise path - use of network theory - methods of eliminating interferences.

UNIT	METHOD OF HARDENING
11	

Cabling – capacitive coupling - inductive coupling- shielding to prevent magnetic radiationshield transfer impedance, Grounding – safety grounds – signal grounds - single point and multipoint ground systems - hybrid grounds- functional ground layout – grounding of cable shields - ground loops - guard shields.

UNIT	BALANCING, FILTERING AND SHIELDING	9
III		

Power supply decoupling - decoupling filters - amplifier filtering – high frequency filtering shielding – near and far fields - shielding effectiveness - absorption and reflection loss, Shielding with magnetic material - conductive gaskets, windows and coatings - grounding of shields.

UNIT IV	DIGITAL CIRCUIT NOISE AND LAYOUT			

Frequency versus time domain - analog versus digital circuits - digital logic noise - internal noise sources- digital circuit ground noise – power distribution-noise voltage objectives - measuring noise voltages - unused inputs - logic families.

UNIT	ELECTROSTATIC DISCHARGE, STANDARDS AND	9	
V	LABORATORY TECHNIQUES		

Static Generation - human body model - static discharges-ED protection in equipment design - ESD versus EMC, Industrial and Government standards – FCC requirements – CISPR recommendations - Laboratory techniques - Measurement methods for field strength - EMI.

TOTAL: 45 PERIODS

9

9

TEXT BOOKS:

- 1. Henry W.Ott, " Noise reduction techniques in electronic systems", John Wiley & Sons, 1989.
- 2. Bernhard Keiser, "Principles of Electro-magnetic Compatibility", Artech House, Inc. (685 canton street, Norwood, MA 020062 USA) 1987.
- 3. Bridges, J.E Milleta J. and Ricketts.L.W., "EMP Radiation and Protective techniques", John Wiley and sons, USA 1976.
- 4. IEEE National Symposium on "Electromagnetic Compatibility", IEEE, 445, hoes Lane, Piscataiway, NJ 08855.

COURSE CODE:
1152EE118

COURSE TITLE: SOLID STATE DRIVES

L	Т	Р	С
3	0	0	3

COURSE CATEGORY:

Program Elective

PREAMBLE :

This course Solid State Drives, provides an introduction to the operation of electric drives controlled from a power electronic converter and also provides the design concepts of controllers

PREREQUISITE COURSES:

Electrical machines, Power Electronics

RELATED COURSES:

Special Electrical Machines

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand the stable steady-state operation and transient dynamics of a motor-load system.
- Study and analyze the operation of the converter / chopper fed dc drive and to solve simple problems.
- Study and understand the operation of both classical and modern induction motor drives.
- Understand the differences between synchronous motor drive and induction motor drive and to learn the basics of permanent magnet synchronous motor drives.
- Analyze and design the current and speed controllers for a closed loop solid-state d.c motor drive

COURSE OUTCOMES :

CO1Explain the concept of AC AND DC drive systemK2CO2Illustrate the operation of the converter / chopper fed dc drive and to solve simple problemsK2CO3Explain the operation of both classical and modern induction motor drivesK2CO4Interpret the operation of synchronous motor drivesK2CO5Explain the operation of special machine drives and its applications.K2	CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO2 drive and to solve simple problems K2 CO3 Explain the operation of both classical and modern induction motor drives K2 CO4 Interpret the operation of synchronous motor drives K2 CO5 Explain the operation of special machine drives and its K2	CO1	Explain the concept of AC AND DC drive system	K2
CO3 induction motor drives K2 CO4 Interpret the operation of synchronous motor drives K2 CO5 Explain the operation of special machine drives and its K2	CO2		K2
Explain the operation of special machine drives and its	CO3		K2
$CO5 \cdot $	CO4	Interpret the operation of synchronous motor drives	K2
	CO5		K2

CORR	CORRELATION OF COs WITH POs AND PSOs													
COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	<u>H</u>	H	L								L	L	H	L
CO2 CO3	<u>H</u> H	H H	M										<u>н</u> Н	
CO3	 H	H	H								 		H	L
CO5	H	H	M								L	L	H	L
COUR	SE CO	ONTEI	NT:											
UNIT I											9			
Advantage of electric drives – Parts and choice of electrical drives – Status of DC and AC drives – Torque-speed characteristics of motor and load – Selection of motor power rating – Thermal model of motor for heating and cooling – Classes of duty cycle – Determination of motor rating – Control of electric drives – Modes of operation – Speed control and drive classifications – Closed loop control of drives.									hermal ating –					
UNIT II	С	ONVE	RTER	/ CHO	OPPE	R FED	DC N	юто	r dri	VE				9
separa	tely e Iadrar	excitec nt oper	D.C ration-	moto - Conv	r [°] driv /erter	e – (contro	Contin	uous	and o	disconti	nuous	ntrolled conduc eady-st	ction m	
UNIT II	I IN	IDUCI		лото	r dri	VES								9
voltage analysi motor -	Analysis and performance of three-phase induction motor – Operation with unbalanced source voltage, single-phasing and unbalanced rotor impedance – Starting – Braking – Transient analysis – Stator voltage control –Adjustable frequency control of VSI and CSI fed induction motor – Static rotor resistance control – Slip-power recovery drives – Open loop Volts/Hz control – Principle of vector control – Vector control of induction motor – Block diagram of closed loop drive.									ansient duction control				
UNIT I	V S	YNCH	RONC	OUS M	OTOF		/ES							9
Cycloc Margin	Open loop Volts/Hz control and self-control of CSI and VSI fed synchronous motor – Cycloconverter fed synchronous motor – Microprocessor based synchronous motor control – Marginal angle control and power factor control – Permanent magnet (PM) synchronous motor – vector control of PM Synchronous Motor (PMSM).													
UNIT V		LDC, S OTOR			ND S'	WITCI	HED R	RELUC	CTAN	CE				9
Brushless DC motor drives and its applications – Variable reluctance and permanent magnet stepper motor Drives – Operation and control of switched reluctance motor – Applications, modern trends in industrial drive.														
	TOTAL: 45 PERIODS													
TEXT B	00K	S:												
	 Bimal K. Bose, "Modern Power Electronics and AC Drives", Pearson Education, 2002. Dubey, G.K., "Fundamentals of Electrical Drives", 2nd Edition, Narosa Publishing House,2001. 													

REFERENCE BOOKS:

- 1. Pillai, S.K., "A First Course on Electrical Drives", Wiley Eastern Limited, 1993.
- 2. Krishnan, R., "Electric Motor and Drives Modelling, Analysis and Control", Prentice Hall of India, 2001.
- 3. Vedam Subrahmanyam, "Electrical Drives", Tata McGraw-hill Publishing company limited, 1994.
- 4. Gopal K.Dubey, "Power semiconductor Controlled Drives", Prentice Hall, 1989

ONLINE RESOURCES:

1. <u>https://nptel.ac.in/courses/108/104/108104140/</u>

1152E	E CODE:	COURSE	TITLE: PR		OF ROBOTIC	s L	-	P	C
	-					3	0	0	3
COURSE CATEGORY:									
Program E									
PREAMBL									
	the basic disposition.	concepts c	of robotics	and their	design man	ufactu	re, ap	plicatio	n, and
PREREQU	JISITE COU	RSES:							
Microproce	essor & Micr	ocontroller							
COURSE	EDUCATIO	NAL OBJEC	CTIVES :						
The object	ives of the c	ourse are to),						
• Uni	derstand the	e basic comp	conents of	robots and	its sensors				
		s of Control							
		troduction at	•						
		gramming ir		J					
		e application		ts					
COURSE	OUTCOME	S :							
Upon t									
	he successf		on of the co	ourse, stude	nts will be ab	le to:			
CO	he successf		on of the co	ourse, stude	nts will be ab	K	nowled		
CO Nos.	he successf	ul completio	on of the co urse Outco		nts will be ab	К (В	nowled ased o om's 1	on revis	sed
	Describe t	ul completio	urse Outco	omes		К (В	ased o om's 1	on revis	sed
Nos.	Describe t sensors	ul completio Cou he basic cor	urse Outco	omes of robots an	d its	К (В	ased o om's 1	on revis Faxono	sed
Nos.	Describe t sensors	ul completio Cοι	urse Outco	omes of robots an	d its	К (В	ased o om's 1 k	on revis Faxono	sed
Nos.	Describe t sensors Explain the motion	ul completio Cou he basic cor	nponents o	omes of robots an d analysis of	d its	К (В	ased o om's 1 k	on revis Faxono	sed
Nos. CO1 CO2	Describe to sensors Explain the motion Illustrate th	ul completio Cou he basic con e basics of C	urse Outco mponents o Control and artificial in	omes of robots an d analysis of telligence	d its	К (В	ased o om's 1 k k	2 (2 (2	sed
Nos. CO1 CO2 CO3	Describe t sensors Explain the motion Illustrate th Write basic	ul completio Cou he basic con e basics of C ne basics of	urse Outco mponents o Control and artificial in ing in robo	omes of robots an d analysis of telligence tics	d its	К (В	ased o om's 1 k k k k k	Caxono (2) (2) (2) (2)	sed
Nos. CO1 CO2 CO3 CO4 CO5	Describe t sensors Explain the motion Illustrate th Write basic Outline the	ul completio Cou he basic con e basics of C ne basics of c programmi	nponents of Control and artificial in ing in robots	omes of robots an d analysis of telligence tics	d its	К (В	ased o om's 1 k k k k k	Caxono (2) (2) (2) (2) (2) (3)	sed
Nos. CO1 CO2 CO3 CO4 CO5 CORRELA Cos PO	Describe t sensors Explain the motion Illustrate th Write basic Outline the	ul completio Cou he basic con e basics of C ne basics of c programmi e application	urse Outco nponents o Control and artificial in ing in robo s of robots Os AND F	omes of robots an d analysis of telligence tics SOS	d its	K (B Blo	ased o om's 1 k k k k k k k k k k k k k k k k k k k	Caxono Caxono (2) (2) (2) (2) (2) (3) (2) (3) (2) (2) (3) (2) (3) (2) (3) (2) (3) (2) (3) (2) (3) (2) (3) (2) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	sed omy)
Nos. CO1 CO2 CO3 CO4 CO5 CORRELA Cos PO CO1 H	Describe t sensors Explain the motion Illustrate the Write basic Outline the TION OF C 1 PO2 PO 3	ul completio Cou he basic con e basics of C ne basics of c programmi e application	urse Outco nponents o Control and artificial in ing in robo s of robots Os AND F	omes of robots an d analysis of telligence tics SOS	d its robotics	K (B Blo	ased o om's 1 k k k PO12 L	on revis Faxond (2 (2 (2 (2 (3 (2 PSO1 H	sed omy)
Nos. CO1 CO2 CO3 CO4 CO5 CORRELA CO1 CO2 H CO2	Describe t sensors Explain the motion Illustrate the Write basic Outline the	ul completio Cou he basic con e basics of C ne basics of c programmi e application	urse Outco nponents o Control and artificial in ing in robo s of robots Os AND F	omes of robots an d analysis of telligence tics SOS	d its robotics	K (B Blo	ased o om's 1 k k k k k k k k k k k k k k k k k k k	An revis Faxond (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	sed omy)
Nos. CO1 CO2 CO3 CO4 CO5 CORRELA Cos PO CO1 H	Describe t sensors Explain the motion Illustrate the Write basic Outline the TION OF C 1 PO2 PO 3	ul completio Cou he basic con e basics of C ne basics of c programmi e application	urse Outco nponents o Control and artificial in ing in robo s of robots Os AND F	omes of robots an d analysis of telligence tics SOS	d its robotics	K (B Blo	ased o om's 1 k k k PO12 L	on revis Faxond (2 (2 (2 (2 (3 (2 PSO1 H	sed omy)

	CONTENT:	
UNIT I	INTRODUCTION	9
power so	on and robotics - Robot Anatomy - Classifications of Robots by urce, intelligence and application area. OMPONENS OF ROBOTS	DOF motion, platform,
a) Manip	ulators – Wrists - End effectors - Control units - Power units - Ro	bot sensors;
	sensors - Proximity sensors - Ranger sensors - Tactile sens for mobile Robots.	sors - Visual sensors -
UNIT II	ROBOT MOTION ANALYSIS AND CONTROL	9
	on to manipulator kinematics - Homogeneous transformations a tor path control - Robot dynamics - configuration of a Robo e.	
UNIT III	ARTIFICIAL INTELLIGENCE	9
factory - and visio	niques – fuzzy logic, neural network - LISP programming - AI and Sensing and digitizing function machine vision - Image processir n system - natural language processing - speech recognition avoidance - natural networks computing.	ng and analysis training
UNIT IV	ROBOT PROGRAMMING	9
	of Robot programming - lead through programming methods -	a robot program as a
	space - motion interpolation - weight, signal and delay co es and limitations of lead through methods.	
		mmands - Branching,
capabilitie	es and limitations of lead through methods.	mmands - Branching, 9
capabilitie	APPLICAIONS OF ROBOT	mmands - Branching, 9 iture application.
capabilitie	APPLICAIONS OF ROBOT nandling - Processing operations - Assembly and inspection - Fu	mmands - Branching, 9
capabilitie UNIT V Material H TEXT BC 1. M R 2. H	APPLICAIONS OF ROBOT nandling - Processing operations - Assembly and inspection - Fu	mmands ⁻ Branching, 9 Iture application. TOTAL: 45 PERIODS s G.Ordey, "Industrial ill, Last print, 1987.
capabilitie UNIT V Material H TEXT BC 1. M R 2. H Y	APPLICAIONS OF ROBOT nandling - Processing operations - Assembly and inspection - Fu OOKS: ikell P.Groover, Michell wein,Roger N. Nagal and Nicholas obotics, technology, Programming and applications" Mc Graw H arry H. Poole, "Fundamentals of Robotics Engineering", Van N	mmands ⁻ Branching, 9 Iture application. TOTAL: 45 PERIODS s G.Ordey, "Industrial ill, Last print, 1987.
capabilitie UNIT V Material H TEXT BC 1. M R 2. H Y REFERE	APPLICAIONS OF ROBOT nandling - Processing operations - Assembly and inspection - Fu OOKS: ikell P.Groover, Michell wein,Roger N. Nagal and Nicholae obotics, technology, Programming and applications" Mc Graw H arry H. Poole, "Fundamentals of Robotics Engineering", Van N ork, 1989.	mmands ⁻ Branching, 9 Iture application. TOTAL: 45 PERIODS s G.Ordey, "Industrial ill, Last print, 1987.
Capabilitie UNIT V Material H TEXT BC 1. M R 2. H Y REFERE 1. V 2. P	APPLICAIONS OF ROBOT nandling - Processing operations - Assembly and inspection - Fu OKS: ikell P.Groover, Michell wein,Roger N. Nagal and Nicholas obotics, technology, Programming and applications" Mc Graw H arry H. Poole, "Fundamentals of Robotics Engineering", Van N ork, 1989. NCE BOOKS: .Damel Hunt, "Smart Robots", Chappan and Hall, 1985 .G.Ranky, C.Y.Ho, "Robot Modeling", IFS (publication) Ltd., UK.,	mmands - Branching, g iture application. TOTAL: 45 PERIODS s G.Ordey, "Industrial ill, Last print, 1987. ostrand Reinhold, New
Capabilitie UNIT V Material H TEXT BC 1. M R 2. H Y REFERE 1. V 2. P 3. W	APPLICAIONS OF ROBOT nandling - Processing operations - Assembly and inspection - Fu OOKS: ikell P.Groover, Michell wein,Roger N. Nagal and Nicholas obotics, technology, Programming and applications" Mc Graw H arry H. Poole, "Fundamentals of Robotics Engineering", Van N ork, 1989. NCE BOOKS: .Damel Hunt, "Smart Robots", Chappan and Hall, 1985	mmands - Branching, 9 Iture application. TOTAL: 45 PERIODS s G.Ordey, "Industrial ill, Last print, 1987. ostrand Reinhold, New
Capabilitie UNIT V Material H TEXT BC 1. M R 2. H Y REFERE 1. V 2. P 3. W In	APPLICAIONS OF ROBOT nandling - Processing operations - Assembly and inspection - Fu OOKS: ikell P.Groover, Michell wein,Roger N. Nagal and Nicholas obotics, technology, Programming and applications" Mc Graw H arry H. Poole, "Fundamentals of Robotics Engineering", Van N ork, 1989. NCE BOOKS: .Damel Hunt, "Smart Robots", Chappan and Hall, 1985 .G.Ranky, C.Y.Ho, "Robot Modeling", IFS (publication) Ltd., UK., /enwar L. Hall, Bethe C. Hall, "Robotics – A user friendly introdu	mmands - Branching, 9 Iture application. TOTAL: 45 PERIODS s G.Ordey, "Industrial ill, Last print, 1987. ostrand Reinhold, New

L	Т	Р	С
3	0	0	3

COURSE CATEGORY:

Program **Elective**

PREAMBLE :

This Course aims to enable the students to gain a fair knowledge on concepts, characteristics and applications of embedded systems to Electrical Engineering and also it will make the students familiarize with real-time.

PREREQUISITE COURSES:

Microprocessor & Microcontroller.

RELATED COURSES:

Embedded System Design

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Teach students all aspects of the design and development of an embedded system, including hardware and embedded software development.
- Learn and understand the characteristics of embedded systems and its architectures.
- Understand and experience of state of the practice industrial embedded systems and intelligent embedded system development.
- Understand the operation of real time systems.

COURSE OUTCOMES :

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain the definitions, components and requirements of the Embedded System.	K2
CO2	Describe the processor, architecture and memory organisation of the Embedded System.	K2
CO3	Develop the interfacing and communication techniques of the Embedded System.	КЗ
CO4	Explain the I/O, testing and applications of the Embedded System.	К2
CO5	Describe the definitions, characteristics and issues of real time systems and Develop the algorithm for real time applications	K2
CORREL	ATION OF COS WITH POS AND PSOS	
	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO	011 PO12 PSO1 PSO2
CO2	1 L L	_ L M L

CO3	Н		Μ										М	
CO3	<u>н</u>	М	H	L	 						М	L	M	M
CO5	H	M	M								111		M	M
COURS	SE CO	ONTEN	NT:											
UNIT I INTRODUCTION TO EMBEDDED SYSTEMS											9			
Introduction to Embedded Systems - definitions and constraints; Structures - Components - Hardware and Processor Requirements - Device and Device drivers - Examples of embedded systems.														
UNIT II												9		
Special Purpose Processors - General Purpose Processors - Architectural Issues: ARM, PIC, CISC, RISC, DSP Architectures - Memory - Memory Organization.														
UNIT II											9			
- Paral	Memory Interfacing - Bus, Protocols & ISA Bus Interfacing - USB Interfacing - AD/DA interfacing - Parallel Data Communication - Serial Data Communication - Network Communication - Wireless Communication.													
	/ El	MBED	DED S	SYSTE	EM I/C), TES	TING	& AP	PLICA	TION				9
Timer - System														
System camera UNIT V Introduc	ns - Aj a, Air-c 7 RI ction -	pplicat conditie E AL T I - Defin	ion E> oner, IME E ition 8	kample Elevat MBEL & chara	es: Wa or Co DDED acteris	ashing ntrol S SYST stics o	y Macl Systen F EM f real-	nine, A n, ATM time s	Automo I Syste ystems	em. s - Issu	/stems	, Auto-fe	ocusing compu	g digita g ting -
System camera UNIT V Introduc Structu	ns - Ap a, Air-o RI ction - re and	pplicat condition EAL T Defin d perfo	ion Ex oner, IME E ition 8 ormane	kample Elevat MBEI k chara ce me	es: Wa or Co DDED acteria asure	ashing ntrol S SYST stics o s of a	Macl Systen EM f real- real til	nine, A n, ATM time syme sym	Automo I Syste ystems stem -	s - Issu Classio	es in re cal Unip - Fault	, Auto-fe eal time process toleran	compu or sche t scheo	g digita g iting - eduling duling.
System camera UNIT V Introduc Structu algorith	is - Aj a, Air-o 7 RI ction - re and ms - 1	pplicat condition EAL T - Defin d perfo Unipro	ion Ex oner, IME E ition 8 ormane	kample Elevat MBEI k chara ce me	es: Wa or Co DDED acteria asure	ashing ntrol S SYST stics o s of a	Macl Systen EM f real- real til	nine, A n, ATM time syme sym	Automo I Syste ystems stem -	s - Issu Classio	es in re cal Unip - Fault	, Auto-fe eal time process	compu or sche t scheo	g digita g iting - eduling duling.
System camera UNIT V Introduc Structu algorith	a, Air-o a, Air-o re and re and ms - l 300K	pplicat condition EAL TI - Defin d perfo Unipro	ion Ex oner, IME E ition 8 ormano cesso	kample Elevat MBEL chara ce me or sche	es: Wa or Co DDED acteris asure edulinç	ashing ntrol S SYS1 stics o s of a g of IR	Macl System EM f real- real tin IS tas	nine, <i>A</i> n, ATM time sy me sys ks - M	Automo 1 System ystems stem - lode ch	s - Issu Classionanges	es in re cal Uniț - Fault	, Auto-fe eal time process toleran FOTAL:	compu or sche t scheo	g digita g iting - eduling duling.
System camera UNIT V Introduc Structu algorith TEXT E 1. 2. 3.	is - Aj a, Air-a re and ms - I 300K Raj K Davic RTS:	pplicat condition EAL TI - Defin d perfo Unipro (S: famal, I Simo	ion Ex oner, IME E ition & ormanic cesso "Embo n, "An Time \$	kample Elevat MBEL chara ce me or sche r sche edded a Embe	es: Wa cor Co DDED acteris asure eduling Syste edded	ashing ntrol S SYS1 stics o s of a g of IR ems", ⁻	y Macl System FEM f real- real tin IS tas Tata N vare P	time sy me sy ks - M AcGrav	Automo A System ystems stem - lode ch w Hill, , Addis	s - Issu Classionanges 1st Edi	tion, 20	, Auto-fe eal time process toleran FOTAL:	compu or sche t scheo 45 PE	g digita 9 1ting - eduling duling. RIODS
System camera UNIT V Introdue Structu algorith TEXT E 1. 2. 3.	ns - Aj a, Air-a re and ms - I 300K Raj K Davic RTS: 0-07-	pplicat condition EAL T - Defin d perfo Unipro (S: famal, i Simo Real- ⁻ 05704	ion Ex oner, IME E ition & ormane cesso "Embe n, "An Time \$ 3.	kample Elevat MBEL k chara ce me or sche r sche edded a Embe Systen	es: Wa cor Co DDED acteris asure eduling Syste edded ns, by	ashing ntrol S SYS1 stics o s of a g of IR ems", "	Macl System FEM f real- real tin IS tas Tata N /are P Krishr	time system time system ks - M AcGrav	Automo A Syste ystems stem - lode ch w Hill, , Addis I Kang	s - Issu Classion nanges 1st Edi son We G. Shi	tion, 20 sley, 20 n, McG	, Auto-fe eal time process toleran FOTAL: 004 000.	compu or sche t scheo 45 PE	g digita 9 1ting - eduling duling. RIODS
System camera UNIT V Introdue Structu algorith TEXT E 1. 2. 3.	is - Aj a, Air-a ction - re and ms - I BOOK Raj K Davic RTS: 0-07- Jean	pplicat condition EAL T - Defin d perfo Unipro (S: (amal, I Simo Real- ⁻ 05704 J.Labr	ion Ex oner, IME E ition & ormane cesso "Embe n, "An Time \$ 3. rosse,	kample Elevat MBEL k chara ce me or sche r sche edded a Embe Systen	es: Wa cor Co DDED acteris asure eduling Syste edded ns, by	ashing ntrol S SYS1 stics o s of a g of IR ems", "	Macl System FEM f real- real tin IS tas Tata N /are P Krishr	time system time system ks - M AcGrav	Automo A Syste ystems stem - lode ch w Hill, , Addis I Kang	s - Issu Classion nanges 1st Edi son We G. Shi	tion, 20 sley, 20 n, McG	, Auto-fe eal time process toleran FOTAL: 004 000. raw-Hill	compu or sche t scheo 45 PE	g digita g ting - eduling duling. RIODS
System camera UNIT V Introduc Structu algorith TEXT E 1. 2. 3. 4. REFER	is - Aj a, Air-a ction - re and ms - I 300K Raj K Davic RTS: 0-07- Jean	pplicat condition EAL T - Defin d perfo Unipro (S: amal, I Simo Real- ⁻ 05704 J.Labr E BOC	ion Ex oner, IME E ition & ormane cesso "Embe n, "An Time S 3. osse, DKS :	kample Elevat MBEL & chara ce me or sche edded Embe Systen "Emb	es: Wa cor Co DDED acteris asure eduling Syste edded ns, by edded	ashing ntrol S SYS1 stics o s of a g of IR ems", ⁻ Softw C.M.	y Macl System FEM f real- real tin IS tas Tata N /are P Krishr em bui	time s me sys ks - M AcGrav rimer" na and Iding t	Automo A System ystems stem - lode ch w Hill, , Addis I Kang blocks'	s - Issu Classion nanges 1st Edi son We G. Shi	tion, 20 sley, 20 n, McG	, Auto-fe eal time process toleran FOTAL: 004 000. raw-Hill	compu or sche t scheo 45 PE	g digita g ting - eduling duling. RIODS
System camera UNIT V Introdue Structu algorith TEXT E 1. 2. 3. 4. REFER 1. 2.	A Air-o A Air-o A Air-o C Air-o A r-o Air-	A policat condition EAL T - Defin d perfo Unipro (S: (amal, d Simo Real- 05704 J.Labr E BOC all, Rea Program	ion Ex oner, IME E ition & ormane cesso "Embe n, "An Time S 3. cosse, OKS: al Tim rd, "Er mmers	edded systen esysten esysten esysten esysten esysten esysten	es: Wa cor Co DDED acteris asure eduling Syste edded ns, by edded ns, by edded syste	ashing ntrol S SYS1 stics o s of a g of IR ems", " Softw C.M. d systems s 2005	Macl System FEM f real- real tin IS tas Tata N /are P Krishr em bui / and I s Arch	time sy time sy ks - M AcGrav rimer" na and Iding k Practic itectur	Automo A Syste ystems stem - lode ch w Hill, , Addis I Kang blocks' ce, Pea	is - Issu Classion Classion Classion Annges 1st Edi Son We G. Shi ', CMP arson, 2 Compre	tion, 20 sley, 20 books, 2008.	, Auto-fe eal time process toleran FOTAL: 004 000. raw-Hill 2nd Ed e Guide	compu or sche t scheo 45 PE	g digita g tting - eduling duling. RIODS , ISBN 999
System camera UNIT V Introdue Structu algorith TEXT E 1. 2. 3. 4. REFER 1. 2.	A Air-o A Air-o A Air-o C Air-o A r-o Air-	A policat condition EAL T - Defin d perfo Unipro (S: (amal, d Simo Real- 05704 J.Labr E BOC all, Rea Program	ion Ex oner, IME E ition & ormane cesso "Embe n, "An Time S 3. cosse, OKS: al Tim rd, "Er mmers	edded systen esysten esysten esysten esysten esysten esysten	es: Wa cor Co DDED acteris asure eduling Syste edded ns, by edded ns, by edded syste	ashing ntrol S SYS1 stics o s of a g of IR ems", " Softw C.M. d systems s 2005	Macl System FEM f real- real tin IS tas Tata N /are P Krishr em bui / and I s Arch	time sy time sy ks - M AcGrav rimer" na and Iding k Practic itectur	Automo A Syste ystems stem - lode ch w Hill, , Addis I Kang blocks' ce, Pea	ive Symmetry s - Issu Classic nanges 1st Edi son We G. Shi ', CMP	tion, 20 sley, 20 books, 2008.	, Auto-fe eal time process toleran FOTAL: 004 000. raw-Hill 2nd Ed e Guide	compu or sche t scheo 45 PE	g digita g tting - eduling duling. RIODS , ISBN 999
System camera UNIT V Introdue Structu algorith TEXT E 1. 2. 3. 4. REFER 1. 2.	IS - Al a, Air-a ction - re and ms - I BOOK Raj K Davic RTS: 0-07- Jean R. Ma T. No and F Dr. P	pplicat condition EAL T - Defin d perfo Unipro (S: (amal, I Simo Real- 05704 J.Labr E BOC all, Rea Program rasad,	ion Ex oner, IME E ition & ormane cesso "Embe n, "An Time S 3. rosse, OKS: al Tim rd, "Er mmers "Emb	edded systen esysten esysten esysten esysten esysten esysten	es: Wa cor Co DDED acteris asure eduling Syste edded ns, by edded ns, by edded syste	ashing ntrol S SYS1 stics o s of a g of IR ems", " Softw C.M. d systems s 2005	Macl System FEM f real- real tin IS tas Tata N /are P Krishr em bui / and I s Arch	time sy time sy ks - M AcGrav rimer" na and Iding k Practic itectur	Automo A Syste ystems stem - lode ch w Hill, , Addis I Kang blocks' ce, Pea	is - Issu Classion Classion Classion Annges 1st Edi Son We G. Shi ', CMP arson, 2 Compre	tion, 20 sley, 20 books, 2008.	, Auto-fe eal time process toleran FOTAL: 004 000. raw-Hill 2nd Ed e Guide	compu or sche t scheo 45 PE	g digita g tting - eduling duling. RIODS , ISBN 999

COURSE CODE:
1152EE121

COURSE TITLE: EMBEDDED CONTROL OF ELECTRICAL DRIVES

Т	Р	С
0	0	3

L

3

COURSE CATEGORY:

Program Elective

PREAMBLE :

Application of Electronic knowledge in industry for rectification of polyphase supply voltage and controlling of motor speed, thermal heating.

PREREQUISITE COURSES:

Microprocessor & Microcontroller

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Understand about electrical drive systems
- Acquire knowledge on ac and dc electric drives
- Know the transient and frequency response of ac and dc electric drives
- Understand the closed loop control of electrical drives
- Know the applications of microcontroller and DSP in electrical drives

COURSE OUTCOMES :

CO Nos.	Course Outcomes										(E	Knowledge Level (Based on revised Bloom's Taxonomy)			
CO1	Explain about the basics characteristics of electrical motors.											K2			
CO2	Outline the types of AC and DC electric drives and its stability considerations.											К2			
CO3	Illustrate the physical representation of electrical drives to find frequency and transient response.										K2				
CO4	Expl	Explain the closed loop control of electrical drives.										K2			
CO5		Summarize the applications of microcontroller and DSP based control of electrical drives										K2			
CORREL	CORRELATION OF COS WITH POS AND PSOS														
COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	Н											L	Н		
CO2	Н											L	Н		
CO3	Н	М	L									Μ	H		
CO4	Н	М	L									Μ	Н		
CO5	Н	М	L								L	М	Н		

UNIT I	INTRODUCTION	g
Electric of electric n	drive systems - solid state devices - solid state switching circu motors - speed torque characteristics of electric motors – PWM of motors.	uits – characteristics of
UNIT II	AC AND DC ELECTRIC DRIVES	g
consider	tion – classification of electric drives – dynamic conditions of a ations of electrical drives – dc choppers, inverters, cyclo rs, stepper motor.	
UNIT III	POWER CONVERTERS	9
of drive s	n motor drives – synchronous motor drives – dc drives – block systems, signal flow graph representation of the systems, transie e, stability of controlled drives.	
UNIT IV	CLOSED LOOP CONTROL OF ELECTRICAL DRIVES	9
stability	criterion – Assessment of relative stability using Nyquist c	riterion – closed loop
	cy response – sensitivity analysis in frequency domain – PID o sation, robust control system design.	controllers – feed back
•		controllers – feed back
Compense UNIT V Introduct functions microcor – applica	sation, robust control system design.	9 – application areas and of electric drives using d variable speed drives es, cement mills, sugar
Compense UNIT V Introduct functions microcor – applica	MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control s of microcontroller and dsp in drive technology – control o htroller and dsp – control system design of microcontroller based ations in textile mills, steel rolling mills, cranes and hoist drive	 application areas and application areas and application areas and d variable speed drives application areas and application areas areas and application areas are
Compense UNIT V Introduct functions microcor – applica	A sation, robust control system design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control s of microcontroller and dsp in drive technology – control of htroller and dsp – control system design of microcontroller based ations in textile mills, steel rolling mills, cranes and hoist drive achine tools, coal mills, paper mills, centrifugal pumps, turbo com	 application areas and application areas and application areas and d variable speed drives application areas and application areas areas and application areas are
compens UNIT V Introduct functions microcor – applica mills, ma TEXT BC 1. V p	Sation, robust control system design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control of microcontroller and dsp in drive technology – control of troller and dsp – control system design of microcontroller based ations in textile mills, steel rolling mills, cranes and hoist drive achine tools, coal mills, paper mills, centrifugal pumps, turbo com OOKS: Yedam Subrahmanyam, "Electric drives – concepts and application of the publishing company limited, New Delhi, 2003 edition.	9 – application areas and of electric drives using d variable speed drives es, cement mills, sugar pressors. TOTAL: 45 PERIODS
compens UNIT V Introduct functions microcor – applica mills, ma TEXT BC 1. V p 2. Je	A sation, robust control system design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control of a of microcontroller and dsp in drive technology – control of the tools of microcontroller based ations in textile mills, steel rolling mills, cranes and hoist drive achine tools, coal mills, paper mills, centrifugal pumps, turbo com DOKS: Yedam Subrahmanyam, "Electric drives – concepts and application bublishing company limited, New Delhi, 2003 edition. ohn. B. Peatman, "Design with PIC Microcontrollers ", Pearson E	– application areas and of electric drives using d variable speed drives es, cement mills, sugar pressors. TOTAL: 45 PERIODS
compens UNIT V Introduct functions microcor – applica mills, ma TEXT BC 1. V p 2. Jo REFERE	A sation, robust control system design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control s of microcontroller and dsp in drive technology – control of throller and dsp – control system design of microcontroller based ations in textile mills, steel rolling mills, cranes and hoist drive achine tools, coal mills, paper mills, centrifugal pumps, turbo com DOKS: Yedam Subrahmanyam, "Electric drives – concepts and application ublishing company limited, New Delhi, 2003 edition. ohn. B. Peatman, "Design with PIC Microcontrollers ", Pearson E ENCE BOOKS:	- application areas and of electric drives using d variable speed drives es, cement mills, sugar pressors. TOTAL: 45 PERIODS
compense UNIT V Introduct functions microcor – applica mills, ma TEXT BC 1. V p 2. Jo REFERE 1. N le	Advision, robust control system design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control is of microcontroller and dsp in drive technology – control of the tools of microcontroller based ations in textile mills, steel rolling mills, cranes and hoist drive achine tools, coal mills, paper mills, centrifugal pumps, turbo com DOKS: Yedam Subrahmanyam, "Electric drives – concepts and application bublishing company limited, New Delhi, 2003 edition. ohn. B. Peatman, "Design with PIC Microcontrollers ", Pearson E ENCE BOOKS: Mohammed. A. El-sharkawi, " Fundamentals of Electrical drives" earning, A division of Thomson learning lin., 2001 edition.	– application areas and of electric drives using d variable speed drives es, cement mills, sugar pressors. TOTAL: 45 PERIODS ons", Tata McGraw Hill Education, Asia 2004.
compens UNIT V Introduct functions microcor – applica mills, ma TEXT BC 1. V p 2. Jo REFERE 1. N le 2. G	Sation, robust control system design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control of a of microcontroller and dsp in drive technology – control of the troller and dsp – control system design of microcontroller based ations in textile mills, steel rolling mills, cranes and hoist drive achine tools, coal mills, paper mills, centrifugal pumps, turbo com DOKS: Yedam Subrahmanyam, "Electric drives – concepts and application ublishing company limited, New Delhi, 2003 edition. ohn. B. Peatman, "Design with PIC Microcontrollers ", Pearson E ENCE BOOKS: Mohammed. A. El-sharkawi, " Fundamentals of Electrical drives" earning, A division of Thomson learning lin., 2001 edition. Gopal. M, "Control System Principles and Design", Tata M ompany limited, New Delhi, second edition.	application areas and of electric drives using d variable speed drives es, cement mills, sugar pressors. TOTAL: 45 PERIODS ons", Tata McGraw Hill Education, Asia 2004. , Books/cole, Thomsor
compens UNIT V Introduct functions microcor – applica mills, ma TEXT BC 1. V p 2. Jo REFERE 1. N le 2. G cr 3. N	Sation, robust control system design. MICROCONTROLLERS AND DSP APPLICATIONS tion – dedicated hardware system versus microcontroller control of a of microcontroller and dsp in drive technology – control of the troller and dsp – control system design of microcontroller based ations in textile mills, steel rolling mills, cranes and hoist drive achine tools, coal mills, paper mills, centrifugal pumps, turbo com DOKS: Yedam Subrahmanyam, "Electric drives – concepts and application ublishing company limited, New Delhi, 2003 edition. ohn. B. Peatman, "Design with PIC Microcontrollers ", Pearson E ENCE BOOKS: Mohammed. A. El-sharkawi, " Fundamentals of Electrical drives" earning, A division of Thomson learning lin., 2001 edition. Gopal. M, "Control System Principles and Design", Tata M ompany limited, New Delhi, second edition.	application areas and of electric drives using d variable speed drives es, cement mills, sugar pressors. TOTAL: 45 PERIODS ons", Tata McGraw Hill Education, Asia 2004. , Books/cole, Thomsor
compens UNIT V Introduct functions microcor – applica mills, ma TEXT BC 1. V p 2. Jo REFERE 1. N le 2. G cri 3. N ir	Advantage of the second exists	9 - application areas and of electric drives using d variable speed drives es, cement mills, sugar pressors. TOTAL: 45 PERIODS ons", Tata McGraw Hill Education, Asia 2004. , Books/cole, Thomson IcGraw Hill publishing

COURSE CODE:
1152EE122

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Program Elective

PREAMBLE :

This course provides an introduction to the design and implementation of VLSI circuits for complex digital systems and the focus is on CMOS technology.

PREREQUISITE COURSES:

• Basic Electronics Engineering, Electronic Devices and Circuits

RELATED COURSES: Nil

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Know the basic silicon semiconductor technology with its physical design
- Understand the techniques of chip design using programmable devices.
- Acquire knowledge on CMOS testing
- Understand the concepts of designing VLSI subsystems
- Know the concepts of digital system using Hardware Description Language.

COURSE OUTCOMES :

CO Nos.				Cours	se Out	Level of learning domain (Based on revised Bloom's taxonomy)								
CO1	Exp	lain C	MOS	Techr	ology							K2		
CO2	Des	cribe (CMOS	S Chip	Desi	gn Teo	chniqu	ies.				K2		
CO3		oorate										K2		
CO4		cribe t c devid		gital de	esign	using	Progr	amma	able			K2		
CO5		strate t criptio	-			using	Hardv	vare				K2		
CORREL	ATIO	N OF (COs V	VITH F	POs A	ND P	SOs							
COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Μ								L		L	Н	L
CO2	Н	Μ								L			Н	L
CO3	Н	М	Μ							L			Н	L
CO4	Н	М	М							L	L	L	Н	L
CO5	Н	М	Μ		L					L	L	L	Н	L
COURSE	CON	TENT:												
UNIT I	СМС	S TEC	CHNO	LOG	(9
An Overv	view o	f silico	on ser	nicon	ductor	tech	nology	y, Bas	sic CN	/IOS te	chnolo	gy: n \	Well, F	Well,

Twin Tub and SOI process. Circuit Elements : Resistors. Capacitors. EAROM. Latch Up and Prevention. Layout Design rules, Stick Diagram, Physical Design : Basic Concepts, CAD tools. Physical Design of logic gates : inverter, NAND, NOR, Design hierarchies. UNIT II **CMOS CHIP DESIGN** 9 Logic Design with CMOS : MOSFETS as switches, Basic logic gates in CMOS and Complex logic gates. Transmission gates : Muxes and latches. CMOS chip design options : full custom ASIC'S, semi custom ASIC and programmable ASIC. Programmble logic structures : 22V10, programming PAL's, Programmable interconnect Reprogrammable GA : Xilinx programmable GA, Features and internal structure of CPLDs, FPGAs, designing with CPLDs and FPGAs. Introduction to IC floor planning and testing, ASIC Design flow. UNIT III **CMOS TESTING** 9 Need for testing, manufacturing test principles, Design strategies for test: design for testability, combinational logic testing, sequential logic testing, fault model types, ATPG, Boundary scan test, built in self test, DFT schemes. Chip level and system level test techniques. **UNIT IV** SYNCHRONOUS DESIGN USING PROGRAMMABLE 9 DEVICES EPROM to realize a sequential circuit, Programmable logic devices : ROM, PLA, PAL, PLD and DESIGN, designing a synchronous sequential circuit using a GAL, realization state machine using PLD, FPGA : introduction, Switching matrix, FPGA Xilinx 2000, Xilinx 3000. UNIT V SPECIFICATION USING VERILOG HDL 9 Basic concepts, language features, VLSI design flow, identifiers, arrays, instances, value set, ports, gate delays. Types of Verilog description - structural gate level RTL, data flow RTL and structural and behavioral RTL descriptions structural gate level RTL : Half adder , Full adder , Ripple carry adder, Multiplexer, encoder, decoder, comparator, equality detector, D-latch, D Flip Flop, JK flip flop. Data flow RTL : Operators, Combinational logic and sequential logic examples. structural and behavioral RTL : Delays and Timing controls ,Procedural assignments and conditional assignments, Multiplexer, Combinational logic and sequential logic examples. **TOTAL: 45 PERIODS TEXT BOOKS:** 1. Weste & E Shraghian : Principles of CMOS VLSI Design (2 / e) Addison Wesley, 1993 for Unit I to Unit I II. 2. Samir Palnitkar, Verilog HDL – Guide to digital design and synthesis, III edition, Pearson Education. 2003 for Unit V **REFERENCE BOOKS:** 1. Weste & E Shraghian : Principles of CMOS VLSI Design (2 / e) Addison Wesley, 1993 for Unit I to Unit I II. 2. Samir Palnitkar, Verilog HDL – Guide to digital design and synthesis, III edition, Pearson Education, 2003 for Unit V

COURSE CODE:
1152EE142

COURSE TITLE: WEARABLE ELECTRONICS

Т	Р	C
0	0	3

L

3

COURSE CATEGORY:

Program Elective

PREAMBLE :

Wearable Electronics mainly deals with the fundamentals of electronics and their applications in textiles and clothing product development.

PREREQUISITE COURSES:

Basic Electronics Engineering

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Learn about fundamentals of wearable technology and different interfacing technologies
- Understand about electrostatically generated nanofibres
- Describe sensing fabric and smart fabric for health care
- Discuss the role of strain sensor in wearable devices
- Know the different applications of wearable technologies

COURSE OUTCOMES :

CO Nos.				С	(Bas	Knowledge Level (Based on revised Bloom's Taxonomy)								
CO1		xplain the basic concept of wearable technology and K2 K2												
CO2	Di	scuss	about	produ	ction of	of nan	ofibres	S.				ł	(2	
CO3	De	escribe	e abou	t elect	roactiv	ve fab	rics.					ł	(2	
CO4	0	utline t	he role	e of st	rain se	ensors	in we	arable	devic	es.		۲	(2	
CO5		ghlight ferent			cations	s of	weara	ble te	echnol	ogy in		ł	(2	
CORR	ELAT											•		
COs		PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L										L	Н	
CO2	Н	L						L					Н	
CO3	Н	L						L					Н	
CO4	Н	L						L					Н	
CO5	Н	L				L	L	L					Н	
COUR	SE C	ONTE	NT:											
UNIT I		INTR	ODU	CTION										9
Comm	Introduction - Current and Future Wearable technology - Interfacing Technologies- Communication Technologies-Data Management Technologies - Energy Management Technologies – Applications - Implications													

UNIT II	ELECTROSTATICALLY GENERATED NANOFIBRES	9							
Introduction - Electrospinning process-Background- Controlling the diameter of the fibre- Formation of yarns and fabrics - Electroactive nanofibers - Inherently conductive polymers and blends – Nanocomposites - Pyrolysis and coating of nanofibres									
UNIT III	II ELECTROACTIVE FABRICS AND WEARABLE MAN- MACHINE INTERFACES 9								
	Introduction- Sensing Fabrics – Actuating fabrics- Smart Fabrics for Health care - Smart Fabric for motion capture - Smart textiles for kinesthetic interfaces.								
UNIT IV	STRAIN SENSORS IN WEARABLE DEVICES								
	 Textile Based Strain Sensors for Wearable Devices - Fabricat plications of Textile Based Strain Sensors 	ion of Textile Based							
UNIT V	APPLICATIONS	9							
	Soldiers Status Monitoring Software - Design and Development of Flexible Solar Tent - Optical fibre fabric display-Communication apparel, Protection and Safety aspects of using electronic gadgets								
	τοτΑ	L: 45 PERIODS							
ΤΕΧΤ ΒΟΟΚ	S:								
1. Xiaon	ning Tao, "Wearable electronics and photonics", CRC Press, 2005								
 Subhas C. Mukhopadhyay, "Wearable Electronics Sensors: For Safe and Healthy Living", Springer International Publishing, 2015 									

COURSE CODE:
1152EE123

COURSE TITLE: VIRTUAL INSTRUMENTATION

L	Т	Р	С
3	0	0	3

COURSE CATEGORY:

Program Elective

PREAMBLE :

To study the concept of virtual instrumentation using software language

PREREQUISITE COURSES:

• Measurement and Instrumentation

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Represent and review signals in digital domain
- Understand the fundamentals of virtual instrumentation
- Familiar with the standards of VI systems
- Impart the concepts of graphical programming
- Identify the analysing tools and simple programming in VI

COURSE OUTCOMES :

• Upon the successful completion of the course, students will be able to:

Level of learning domain (Based on revised Bloom's)
K2
K2
K2
K2
КЗ

CORRELATION OF COS WITH POS AND PSOs

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L											Н	
CO2	Н	L											Н	
CO3	Н	L											Н	
CO4	Н	М	L									L	H	
CO5	Н	Н	L		Μ						L	М	Н	L
COURSE CONTENT:														
UNIT I REVIEW OF DIGITAL INSTRUMENTATION 9											9			
Representation of analog signals in the digital domain – Review of quantization in amplitude and														

time – S	ample and hold –Sampling theorem – ADC and DAC						
UNIT II	FUNDAMENTALS OF VIRTUAL INSTRUMENTATION	9					
Concept of virtual instrumentation – PC based data acquisition – Typical on board DAQ card – Resolution and sampling frequency – Multiplexing of analog inputs – Single-ended and differential inputs – Different strategies for sampling of multi-channel analog inputs – Concept of universal DAQ card – Use of timer-counter and analog outputs on the universal DAQ card							
UNIT III	CLUSTER OF INSTRUMENTS IN VI SYSTEM	9					
	ng of external instruments to a PC – RS232 – RS 422 – RS 4 8 standard – ISO-OSI model for serial bus – Introduction to bus I bus						
UNIT IV	GRAPHICAL PROGRAMMING ENVIRONMENT IN VI	9					
types –	Concepts of graphical programming – Lab-view software – Concept of VIs and sub VI – Display types – Digital – Analog – Chart – Oscilloscopic types – Loops – Case and sequence structures – Types of data – Arrays – Formulae nodes – Local and global variables – String and file I/O						
UNIT V	ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI	9					
tempera	ransform – Power spectrum – Correlation – Windowing and filteri ture indicator – ON/OFF controller – PID controller – CRO emula econd order system – Generation of HTML page						
		TOTAL: 45 PERIODS					
TEXT B	DOKS:						
	Supta, S. and Gupta, J.P., "PC Interfacing for Data Acquisition an nstrument society of America, 1994.	d Process Control",					
	Peter W. Gofton, "Understanding Serial Communications", Sybex						
3. Robert H. Bishop, "Learning with Lab-view", Prentice Hall of India, 2003.							
REFERENCE BOOKS:							
 Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control", Newnes, 2000. 							
 Gary W. Johnson, Richard Jennings, "Lab-view Graphical Programming", McGraw-Hill Professional Publishing, 2001. 							
3. Virtual Instrumentation Using Labview, JOVITHA JEROME, PHI Learning, 2010							

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Program Elective

PREAMBLE :

This course will supplement the Control System course in Program Core by introducing the concepts of digital control system, design of compensators in discrete domain, formulating state model for discrete time system and finally providing idea about optimal control.

PREREQUISITE COURSES:

Control Systems

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Introduce about digital control system
- Design compensators in discrete domain
- Extend the knowledge of state space to discrete time system
- Provide the basics of Optimal control and Lyapunov stability

COURSE OUTCOMES :

CON	ю				В		wledge (Revise Taxon	ed							
CO1		Explain the method conversion of continuous time to discrete time systems and the need of digital control system										К	2		
CO2	2	Apply the knowledge of Z-transforms in handling difference equations and obtaining the pulse transfer functions										К	3		
CO3	K	Design compensators via time and frequency domain methods									K4				
CO4		Develo observ via pol	ability	of dis	crete					-	КЗ				
CO5	`	Apply about (K	3		
CORRE	ELAT	ION O	F CO	s WITI	H POs	AND	PSO	5							
COs	PO1	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10							PO10	P011	PO12	PSO1	PSO2		
CO1	Н	Н	М									L			
CO2	<u>H</u>	H	M								M	M	<u>H</u>	M	
CO3	<u>H</u>	H	M	M							M M H M				
CO4 CO5	<u>H</u> H	H H	M	Μ							M M	M M	<u>н</u> Н	M	

COURSE	CONTENT:					
UNIT I	INTRODUCTION	9				
Represe	digital Control-Signal Conversion- Discrete Time Signals- Intation- Quantizing and Quantization Error- Sampling Pro- Aliasing-Data Reconstruction					
UNIT II	PULSE TRANSFER FUNCTIONS	9				
Transfer	form-Inverse Z Transform- Difference Equation-Mapping s-Pla Function- Pulse Transfer Function of Closed Loop System- St near transformation					
UNIT III	DESIGN OF SAMPLED DATA SYSTEM	9				
Lag/Lead	us Method – Controller Design using root locus-Nyquist Stabilit I and Lag-Lead Compensator design in frequency domain- De at- Some Practical Issues					
UNIT IV	STATE SPACE MODEL FOR DISCRETE TIME SYSTEMS	9				
vice vers	on- State Variable representation-Conversion from state model t a- Solution of state difference equation- Concepts of Controllab ia Pole Placement- State Observers					
UNIT V	LYAPUNOV STABILITY AND OPTIMAL CONTROL	9				
	Definition-Lyapunov Stability Theorem- Lyapunov functions for lin on to Optimal Control- Performance Indices- LQR design	ear/nonlinear system-				
		TOTAL: 45 PERIODS				
TEXT BO	OKS:					
	Discrete Time Control Systems" by Kautshiko Ogata, Pearson Ed D15	ucation ,2nd edition				
 "Digital Control and State Variable Methods" by M.Gopal, TMH Publication, 2nd edition, 2014 						
REFERE	NCE BOOKS:					
	Digital Control System" by B.C Kuo,Oxford University Press, 2nd	Edition 2007				
1. "						
2. "[Digital Control of Dynamic Systems", by G. F. Franklin, J. D. Powe (orkman,Addison Wesley, 3rd edition 2010					
2. "[V	Digital Control of Dynamic Systems", by G. F. Franklin, J. D. Pow					

COURSE TITLE: INTRODUCTION TO NONLINEAR DYNAMICAL SYSTEMS

L	Т	Ρ	С
3	0	0	3

COURSE CATEGORY: Program Elective

PREAMBLE :

The basic necessity of this course arises from the fact that most of the real world systems are highly nonlinear and handling these needs some preliminary background of these systems and its behaviour. This course introduces Nonlinear Systems in a basic level starting from one dimensional flow and ending in two dimensional flows.

PREREQUISITE COURSES:

Control Systems

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Impart knowledge about nonlinear systems in general
- Provide adequate knowledge in Bifurcation methods in 1 and 2 D flows
- Introduce the concepts of Chaos

COURSE OUTCOMES :

	los				Leve	Knowledge Level(Revised Bloom's Taxonomy)									
CO	1							ar Sys			K2				
CO								ds for					2		
CO										stems			2		
CO	4		ribe t cations		xisten	ce of	limit	t cycl	es ar	nd its		K	2		
CO	5	Expla	in abo	out cha	aotic S	System	າຣ					K	2		
CORRI	CORRELATION OF COS WITH POS AND PSOS														
COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	Н	L											Н		
CO2	Н	Μ	L								L	LLH			
CO3	Н	Μ	L								L	L	Н		
CO4	Н	М	L								L	M	Н		
CO5	Н	Μ	L								L	М	Н		
COUR	SE C	ONTE	NT:												
UNIT I	11	NTROD	UCTI	ON AI	ND OI	NE-DII	MENS	IONA	L FLO	W				9	
Introduction to Dynamics – Importance of Nonlinear Systems-1D Systems- Fixed points and Stability- Linear stability Analysis- Existence and Uniqueness- Potentials															
UNIT II	JNIT II BIFURCATIONS IN 1 D SYSTEMS AND FLOWS ON CIRCLE								9						
Saddle	Saddle Node – Transcritical – Pitch Fork –Uniform/Non uniform Oscillator-examples														

UNIT III	UNIT III 2 D FLOWS								
portraits-	Linear Systems: Introduction – Example- Classification; Phase Plane: Introduction- Phase portraits-Existence and uniqueness-Linearization-Conservative System- Reversible System-Index Theory								
UNIT IV	LIMIT CYCLES AND BIFURCATION IN 2D	9							
Relaxatio	Introduction- Existence of Limit Cycle- Poincare Bendixson Theorem-Lienard Systems Relaxation and Weakly Nonlinear Oscillator; Bifurcations: Saddle. Trans-critical, Pitch fork- Hop Bifurcation-examples- Poincare Maps								
UNIT V	INTRODUCTION TO CHAOS	9							
	quation- Properties of Lorenz Equation-Chaos on Strange attra nal Maps – Fixed Points and Cobweb – logistic map- Liapunov								
	TOTAL: 45 PERIODS								
TEXT BOOKS:									
 "Introduction to Applied Nonlinear Dynamical Systems and Chaos", Stephen Wiggins, 2nd Edition, Springer 2010 									

 "Nonlinear Dynamics and Chaos with applications to Physics, Biology, chemistry and Engineering", Steven H Strogatz, Indian Edition by Levant Books- 2007

COURSE CODE:
1152EE126

COURSE TITLE: NETWORK ANALYSIS AND SYNTHESIS

Т	Р	С
0	0	3

L

3

COURSE CATEGORY:

Program Elective

PREAMBLE :

To expose basic circuit concepts, circuit modeling and methods of circuit analysis in time domain and frequency domain for solving simple and multi-dimensional circuits including coupled circuits and three phase circuits.

PREREQUISITE COURSES:

Circuit Analysis

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Understand the concept of graph theory using different analysis methods
- Apply different network functions for the analysis of electrical networks
- Understand the concept of two port networks
- Understand the properties of network functions
- Explain about the fundamental and types of filter

COURSE OUTCOMES :

CO Nos		Course Outcomes										Knowledge Level (Based on revised Bloom's Taxonomy)			
C01		Illustrate the concept of graph theory using different analysis methods									K2				
C02		Apply electric			twork	functi	ons f	or the	e ana	lysis of	:	ł	〈 3		
C03		Summa	arize th	ie con	cept o	f two p	oort ne	etwork	S			ł	〈 2		
C04	(Outline	the pr	operti	es of r	networ	k func	tions			K2				
C05		Explain	about	the fu	Indam	ental	and ty	pes of	filter		K2				
CORR	ELA		F CO	s WITI	H POs	S AND	PSO	5							
COs	PO	I PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	Н	Μ	L								L	М	Н		
CO2	Н	I H L L I I I I I I I I I I I I I I I I							L	М	Н	L			
CO3	Н	I M L L									М	Н			
CO4	Н	I M L I I I I I I I I I I I I I I I I I									L	Н			
CO5	Н	М	L								L	М	Н	L	

COURS	E CONTENT:	
UNIT I	GRAPH THEORY	9
	f a Network - definitions, tree, co tree , link, basic loop and ba cut set matrix - Tie set matrix Duality - Loop and Nodal methods o	
UNIT II	NETWORK FUNCTIONS	9
port netv	of Complex frequency - Transform Impedances Network function vorks - concept of poles and zeros - properties of driving point a ponse and stability from pole zero plot.	•
UNIT III	TWO PORT NETWORKS	9
symmetr	erization of LTI two port networks ZY - ABCD and h parameters - inter-connections y. Inter-relationships between the parameters - inter-connections and Lattice networks - T & Π Representation.	
UNIT IV	NETWORK SYNTHESIS	9
functions	real function - definition and properties - properties of LC, RC s - synthesis of LC, RC and RL driving point immittance funct st and second forms.	
UNIT V	FILTERS	9
• •	arameters and characteristics impedance - passive filter fundamend nd pass, band reject, (constant K type) filters,	entals, low pass, high
		TOTAL: 45 PERIODS
TEXT B	DOKS:	
1. N	I.E. Van Valkenburg, "Network Analysis", Prentice Hall of India	
2. A	.Chakrabarti, "Circuit Theory" Dhanpat Rai & Co.	
	L Wadhwa, "Network Analysis and Synthesis" New Age Internat 007.	tional Publishers,
	.Roy Choudhary, "Networks and Systems" Wiley Eastern Ltd.	
5. C	onald E. Scott: "An Introduction to Circuit analysis: A System Ap	proach" McGraw Hill
REFERE	INCE BOOKS:	
1. N	I.E. Van Valkenburg, "An Introduction to Modern Network Synthe	esis",Wiley Eastern Ltd.
2. N	I.C. Jagan and C. Lakshminarayana, "Newwork Analysis" B.S. Po	ublications, 2008.
3. K	S. Suresh Kumar, "Electric Circuits and Networks" Pearson Edu	cation, 2009.
4. A	Ramakalyan, "Linear Circuits: Analysis and Synthesis" Oxford L	Iniversity Press, 2005.
	lahmood Nahvi, Joseph A Edminister "Schaum's Outline of lcGraw –Hill 2004	Electric Circuits" TATA
ONLINE	RESOURCES:	
1. h	ttps://nptel.ac.in/courses/108105159	

COURSE CODE: 1152EE127

COURSE TITLE: SIGNALS AND SYSTEMS

L	Т	Ρ	С
3	0	0	3

COURSE CATEGORY:

Program Elective

PREAMBLE :

This course becomes the basis of introducing the students to the concept of signals, systems and its types, also the method of handling the signals by various mathematical tools. This course is designed pedagogically and uncovers the concepts of continuous and discrete time signals and the systems.

PREREQUISITE COURSES:

Engineering Mathematics

RELATED COURSES:

Control Systems, Digital Signal Processing, Digital Control Systems

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Introduce signals(Continuous and discrete), systems(Continuous and discrete), its types and operation on signals
- Provide an intuitive understanding of the application of Fourier Series, Fourier Transforms(Including DFT) and Z-transforms
- Show the applications of these mathematical tools in networks

COURSE OUTCOMES :

CO1Classify the various types of signal and systems and operate on the signals(like shifting ,scaling etc)K2CO2Apply Fourier series and Fourier transforms in the analysis of signalsK3CO3Identify the significance of Laplace Transforms and apply the same to some basic circuitsK3CO4Explain the concept of samplingK2CO5Apply the Z-Transforms technique to DT signalK3CORRELATION OF COS WITH POS AND PSOsCO1HMLLCO2HMMLCO3HMMLMCO4HMMLMCO5PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PSO1PSO2HMHCO3HMLLCO4HMLLCO3HMHLCO3HMHLCO4HMLLCO3HMHLCO4HMLLCO5HMHLCO3HMHLCO4HMHLCO5HMHL	CO Nos				C		(E	Knowledge Level (Based on revised Bloom's Taxonomy)									
CO2 analysis of signals CO3 Identify the significance of Laplace Transforms and apply the same to some basic circuits CO4 Explain the concept of sampling K2 CO5 Apply the Z-Transforms technique to DT signal K3 CORRELATION OF COS WITH POS AND PSOs CO1 H M L M H L CO2 H M L L M H L CO3 H M L L M H L	CO1		operate on the signals(like shifting ,scaling etc)														
CO3 apply the same to some basic circuits CO4 Explain the concept of sampling K2 CO5 Apply the Z-Transforms technique to DT signal K3 CORRELATION OF COS WITH POS AND PSOS CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 H M L I <thi< th=""> I<td>CO2</td><td></td><td colspan="11"></td></thi<>	CO2																
CO5Apply the Z-Transforms technique to DT signalK3CORRELATION OF COS WITH POS AND PSOsCOsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PSO1PSO2CO1HMLIIIIIIIIICO2HMMLIIIIIIIIICO3HMMLIII <td>COS</td> <td></td> <td colspan="10"></td>	COS																
CORRELATION OF COS WITH POS AND PSOS COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 H M L Image: Colored and the second and	CO4	1 E	xplain	the co	oncept	of sa	mpling)					K2				
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 H M L L M H L CO2 H M M L L M H L CO3 H M M L L M H L CO3 H M L L M H L CO4 H M L L M H L	COS	5 A	pply th	ne Z-T	ransfo	orms te	echniq	ue to	DT sig	Inal			K3				
CO1 H M L Image: Constraint of the state of	CORR	ELAT	ION O	F CO	s WITI	H POs	S AND	PSO	5								
CO2 H M L L M H L CO3 H M M L L M H L CO4 H M L L M H L	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2		
CO3 H M L L M H L CO4 H M L I <td>CO1</td> <td>Н</td> <td>Μ</td> <td>L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L</td> <td>М</td> <td>Н</td> <td>L</td>	CO1	Н	Μ	L								L	М	Н	L		
CO4 H M L L M H L	CO2	Н	М	Μ	L							L	М	Н	L		
	CO3	Н	H M M L										М	Н	L		
	CO4	Н	- M L L L											Н	L		
	CO5	Н	М	Μ								L	М	Н	L		

COURSE	CONTENT:									
UNIT I	CLASSIFICATION OF SIGNALS AND SYSTEMS	9								
sampling	Introduction to Continuous and Discrete Time Signals- Continuous to Discrete transformation- sampling-Classifications of Continuous and Discrete time signal-Introduction to Continuous and Discrete Time systems and its Classification- LTI System- Impulse response									
UNIT II	FOURIER SERIES ANALYSIS	9								
	Introduction to Fourier Series-Trigonometric Coefficients- Evaluation of Fourier Coefficients - Symmetry Conditions – Discrete time Fourier Series-Application of Fourier Series to networks									
UNIT III	FOURIER TRANSFORMS	9								
Representation of a periodic signals- Continuous time Fourier Transform - Proper ties of Fourier Transforms-Discrete Time Fourier Transforms - Properties of DTFT-Duality- Fourier Series and Transform Pairs										
UNIT IV	LAPLACE TRANSFORMS S									
Fourier to Laplace and Motivation-Region of Convergence - Properties of Laplace transforms- Inverse Laplace Transforms- Application to Circuits										
UNIT V	Z- TRANSFORMS	9								
	on-Region of Convergence- Relation Between s and z Plane- Z- on of Z-transforms to Discrete time systems-	-transform Pairs-								
		TOTAL: 45 PERIODS								
TEXT BC	OKS:									
1. B	P. Lathi, "Principles of Linear Systems and Signals", Second E	dition, Oxford, 2009.								
2. A	lan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Syste	ems", Pearson, 2007.								
REFERE	NCE BOOKS:									
	E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals & System screte", Pearson, 2007.	ms - Continuous and								
2. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007.										
 M.J.Roberts, "Signals & Systems Analysis using Transform Methods & MATLAB", Tata McGraw Hill, 2007. 										
ONLINE RESOURCES:										
1. ht	tps://nptel.ac.in/courses/108106163									

COURSE CODE: 1152EE128

COURSE TITLE: SOFT COMPUTING

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Program Elective

PREAMBLE :

This course becomes the basis of introducing the students to the concept soft computing techniques like neural network, fuzzy logic, genetic algorithm and hybrid soft computing techniques.

PREREQUISITE COURSES: Nil

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

• Understand about the basics of soft computing techniques like neural network, fuzzy logic, genetic algorithm and hybrid soft computing techniques with its applications.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)							
CO1	Explain the basics of soft computing techniques	K2							
CO2	Describe the neural network concepts	K2							
CO3	Explain about the fuzzy logic concepts	K2							
CO4	Illustrate the basic concepts of genetic algorithm	K2							
CO5	Describe about hybrid soft computing techniques and its applications	K2							
CORRELATION OF COS WITH POS AND PSOS									
COs P	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 F	011 P012 PS01 PS02							

003	FUI	FUZ	FUJ	F 04	FUJ	FUU	FUI	FUO	F U 9	FUIU	FUII	FUIZ	F 30 I	F 302
CO1	Н	М	L								L	М	Н	L
CO2	Н	М	М								L	М	Н	L
CO3	Н	М	М								L	М	Н	L
CO4	H	М	М								L	Μ	Η	L
CO5	Н	М	М								L	М	Н	L

COURSE CONTENT:

UNIT I INTRODUCTION

9

Artificial neural network: Introduction, characteristics- learning methods – taxonomy – Evolution of neural networks- basic models – important technologies – applications. Fuzzy logic: Introduction – crisp sets- fuzzy sets – crisp relations and fuzzy relations: cartesian product of relation – classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets. Genetic algorithm- Introduction – biological background – traditional optimization and search techniques – Genetic basic concepts.

UNIT II NEURAL NETWORKS

9

McCulloch-Pitts neuron – linear separability – hebb network – supervised learning network: perceptron networks – adaptive linear neuron, multiple adaptive linear neuron, BPN, RBF,

TDNN- associative memory network: auto-associative memory network, hetero-associative memory network, BAM, hopfield networks, iterative autoassociative memory network & iterative associative memory network – unsupervised learning networks: Kohonen self organizing feature maps, LVQ – CP networks, ART network.

UNIT III FUZZY LOGIC

9

Membership functions: features, fuzzification, methods of membership value assignments-Defuzzification: lambda cuts – methods – fuzzy arithmetic and fuzzy measures: fuzzy arithmetic – extension principle – fuzzy measures – measures of fuzziness -fuzzy integrals – fuzzy rule base and approximate reasoning : truth values and tables, fuzzy propositions, formation of rules-decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning-fuzzy inference systems-overview of fuzzy expert system-fuzzy decision making.

UNIT IV GENETIC ALGORITHM

Genetic algorithm and search space – general genetic algorithm – operators – Generational cycle – stopping condition – constraints – classification genetic programming – multilevel optimization – real life problem- advances in GA.

UNIT V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS

9

9

Neuro-fuzzy hybrid systems – genetic neuro hybrid systems – genetic fuzzy hybrid and fuzzy genetic hybrid systems – simplified fuzzy ARTMAP – Applications: A fusion approach of multispectral images with SAR, optimization of traveling salesman problem using genetic algorithm approach, soft computing based hybrid fuzzy controllers.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. J.S.R.Jang, C.T. Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI / Pearson Education 2004.
- 2. S.N.Sivanandam and S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt Ltd, 2011.

REFERENCE BOOKS:

- 1. S.Rajasekaran and G.A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis & Applications", Prentice-Hall of India Pvt. Ltd., 2006.
- 2. George J. Klir, Ute St. Clair, Bo Yuan, "Fuzzy Set Theory: Foundations and Applications" Prentice Hall, 1997.
- 3. David E. Goldberg, "Genetic Algorithm in Search Optimization and Machine Learning" Pearson Education India, 2013.
- 4. James A. Freeman, David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques, Pearson Education India, 1991.
- 5. Simon Haykin, "Neural Networks Comprehensive Foundation" Second Edition, Pearson Education, 2005.

ONLINE RESOURCES:

1. <u>https://nptel.ac.in/courses/106105173</u>

COURSE TITLE: BIO MEDICAL INSTRUMENTATION

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Program Elective

PREAMBLE:

The course is designed to make the student acquire an adequate knowledge of the physiological systems of the human body and relate them to the parameters that have clinical importance. The fundamental principles of equipment that are actually in use at the present day are introduced.

PREREQUISITE COURSES: Basic Electrical Engineering

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Provide an acquaintance of the physiology of the heart, lung, blood circulation and circulation respiration.
- Introduce the methods of different transducers used.
- Provide the latest ideas on devices of non-electrical devices.
- Provide latest knowledge of Pulmonary Measurement & Bio Telemetry
- Bring out the important and modern methods of imaging techniques.

COURSE OUTCOMES :

CO Nos.				Со		Knowledge Level (Based on revised Bloom's Taxonomy)								
CO1		ain neerin		the	fur	ndame	entals	of	biom	edical		K	2	
CO2	-	Explain about the basics of various sensing and K2 measurement devices												
CO3		Illustrate the latest ideas on devices of non- K2 electrical devices												
CO4		Apply the latest knowledge of Pulmonary K3 Measurement & Bio Telemetry												
CO5		cribe Inique						ods (of im	aging		K	2	
CORREL	ATIO	N OF (COs V	итн і	POs A	ND P	SOs							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L										L	М	
CO2	Н	L										L	М	
CO3	Н	L	L								L	L	Μ	L
CO4	Н	L										L	Μ	
CO5	Н	H L L IIIII										L	М	L

COURS	E CONTENT:	
UNIT I	FUNDAMENTALS OF BIOMEDICAL ENGINEERING	9
biomedic tissues -	its structure – Resting and Action Potential – Nervous system – cal system- Cardiovascular systems- Respiratory systems - Basic mechanics of spinal column and limbs- Transducers – se ultrasonic transducers - Temperature measurements - Fibre optic	Biomechanics of soft election criteria – Piezo
UNIT II	BIOMEDICAL MEASUREMENT	9
environm	es –types-Amplifiers - ECG – EEG – EMG – ERG - Electionent, shock hazards – leakage current-Instruments for checkin cal equipments.	
UNIT III	NON ELECTRICAL PARAMETERS MEASUREMENT AND DIAGNOSTIC PROCEDURES	9
function Gas ana	ment of blood pressure - Cardiac output - Heart rate - Heart measurements – spirometer – Photo Plethysmography, Body Pletlysers, pH of blood –measurement of blood pCO2, pO2, fingasurements.	ethysmography – Blood
UNIT IV	PULMONARY MEASUREMENT AND BIO TELEMETRY	9
Biotelem	gy of respiratory system – Respiratory rate measurement – wire etry – Telemetering multiple information – implanted transmitters hazards and safety techniques.	
UNIT V	MEDICAL IMAGING SYSTEM	9
	nd scanner – Echo cardiography – Coloar Doppler system – C/ – Cine angiogram – LASER Imaging – Endoscope.	AT and CT scan – MRI
		TOTAL: 45 PERIODS
TEXT BO	DOKS:	
	eslie Cromwell, Biomedical Instrumentation and Measurement, F lew Delhi,2007.	Prentice hall of India,
	oseph J.carr and John M. Brown, Introduction to Biomedical Equ ohn Wileyand sons, New York, 4th Edition, 2012.	ipment Technology,
	handpur R.S, Handbook of Biomedical Instrumentation, , Tata M nd Edition, 2003.	lcGraw-Hill, New Delhi,
REFERE	INCE BOOKS:	
	ohn G. Webster, Medical Instrumentation Application and Desigr lewYork, 1998.	n, John Wiley and sons,
2. C	Duane Knudson, Fundamentals of Biomechanics, Springer, 2nd E	dition, 2007.
	uh, Sang, Gurupur, Varadraj P., Tanik, Murat M., Health Care nd Techniques, Springer, 1st Edition, 2011.	e Systems, Technology
ONLINE	RESOURCE:	
1 h	ttps://nptel.ac.in/courses/102106098	

1. https://nptel.ac.in/courses/102106098

COURSE CODE:
1152EE130

COURSE TITLE: PROCESS AUTOMATION

L	Т	Р	С
3	0	0	3

COURSE CATEGORY:

Program Elective

PREAMBLE :

This course is designed to provide the knowledge on recent trends in automation techniques (Programmable Logic Controllers & Distributed Control Systems deployed in the various core industries and research organization.

PREREQUISITE COURSES:

Digital Logic Circuits

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Realize the working, design and need of timers, counters, various memories and their efficient managing techniques.
- Relate the automation techniques to real world engineering applications.

COURSE OUTCOMES :

CO Nos.				Co	urse	Outc	omes				d	Level of learning domain (Based on revised Bloom's)			
CO1	Illustr	ate the	e basio	cs of F	PLCs								K2		
CO2		gn Lad ters.	der Di	agran	ו by p	orogra	mmin	g the	timer	s and			K3		
CO3	-	Design the PLCs addressing applications and research K3 roblems.													
CO4	Exem	Exemplify the basics and design of DCS K3													
CO5	-	rating mation		s com	ipone	nts to	DCS	to ex	ecute	1			K2		
CORREL	ATION	OF CO)s WI	гн рс)s AN	ID PS	SOs				•				
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	Н	L	Μ	Μ							L	М	Н	L	
CO2	Н	Н	Μ	Н								L	Н		
CO3	Н	L	L	М								L	Н	L	
CO4	Н	H L M M L L							L	Μ	Н	L			
CO5	5 H M L .											L	Н		
COURSE	CONTI	ENT:													
UNIT I PROGRAMMABLE LOGIC CONTROLLER											9				
Evolution	of PLC	;'s – C	ompo	nents	of P	LC –	Adva	ntage	s ove	er relay	logic	- PLC	progra	mming	

language	28									
UNIT II	PROGRAMING IN PLC	9								
Ladder c	Ladder diagram – Programming timers and counters – Design of PLC.									
UNIT III	APPLICATIONS OF PLC	9								
	Instructions in PLC – Program control instructions, math instructions, sequencer instructions – Use of PC as PLC – Application of PLC – Case study of bottle filling system									
UNIT IV	IV DISTRIBUTED CONTROL SYSTEMS (DCS) 9									
architect	Definition, architecture (centralized, hybrid generalized DCS) Local Control Unit (LCU) architecture, LCU languages, LCU – Process interfacing issues, communication facilities, configuration of DCS.									
UNIT V	INTERFACES IN DCS	9								
Enginee	interfaces - Low level and high level operator interfaces – Operating interfaces – Low level and high level engineering interfaces - rs in DCS.									
		TOTAL: 45 PERIODS								
TEXT B	DOKS:									
	rogrammable Logic Controllers, 3rd Edition, by Frank Petruzella, ublications.	, Tata Mc Grawhill								
REFERE	NCE BOOKS:									
	 Programmable Logic Controllers, 5th Edition, by George Bolton, Elsevier India publications. 									
2. F	rogrammable Logic Controllers, by Webb John W, Reis Ronald	A, PHI learning pvt ltd.								
	rogrammable Logic Controllers: Programming methods and App lackworth, Pearson India Publications.	blications 1st Edition by								

					COU	RSE ⁻	TITLE:	UTILIZA	TION O	F		Т	Р	С
COURS	SE CODE	: 1152	EE132	2			CTRIC	AL ENEF	GY		3	0	0	3
COURS	E CATEO	ORY:												
Program	Elective													
PREAM	BLE :													
	urse will nechanic									action	n, E	Electri	cal he	eating
PREREC	QUISITE	COUR	SES:											
Basio	c Electrica	al Engi	neerin	ng										
RELATE	D COUR	SES:												
Product	Developn	nent &	Desig	jn, LE	D Lig	hting	Techn	ology						
COURS	E EDUCA	TION	AL OE	BJEC	TIVES	S:								
he obje	ctives of	the co	urse a	re to,										
					•	• ·	•	s and the	• •			Tractiv		I
• Ir E COURSI	mpart kno Electro Me E OUTCO In the succ	owledg echanic DMES	e on e cal pro :	effectiv ocess	ve util	izatio e cou	n of Ele	ectrical D	rives, El	ectric e to:	Lev	vel of nain (l	learni Based	ng on
• Ir E COURSI Upor	mpart kno lectro Me E OUTCO	owledg echanic DMES	e on e cal pro :	effectiv ocess	ve util	izatio e cou	n of Ele	ectrical D	rives, El	ectric e to:	Lev rev	/el of nain (l rised ∣	learni	ng on
• Ir E COURSI Upor CO	mpart kno Electro Me E OUTCO n the succ	owledg echanic DMES cessful	e on e cal pro : comp	effectivo ocess oletion Cour	ve util	e cou utcor	n of Ele rse, stu nes	ectrical D	rives, El	ectric e to:	Lev rev	/el of nain (l vised ∣ taxon	learni Based Bloorr	ng on
• Ir E COURSI Upor CO Nos.	mpart kno lectro Me E OUTCO n the succo Determi	owledg echanic DMES cessful	e on e cal pro : comp MHCP	effectivo ocess eletion Cour and I	ve util	e cou utcor	n of Ele Irse, stu mes arious l	ectrical D udents wi	rives, El	ectric e to:	Lev rev	/el of nain (l vised ∣ taxon	learni Based Bloom Iomy) 2	ng on
• Ir ECOURSI Upor CO Nos. CO1	mpart kno Electro Me E OUTCO In the succo Determi Illustrato	owledg echanic DMES cessful ne of N e the E he driv	e on e cal pro : comp MHCP Electric	effectivo ocess oletion Cour and I c Heat sed o	ve util	e cou utcor P of va Veldir	n of Ele rse, stu nes arious I ng & Fu	ectrical D udents wi	rives, El Il be able /stem. ocess	ectric e to:	Lev rev	vel of nain (I rised taxon K	learni Based Bloom iomy) 22 22	ng on
Ir E COURSI Upor CO Nos. C01 C02	Determi Illustrate Illustrate Illustrate	owledge echanic DMES cessful ne of N e the E he drivement f e the ro applica	e on e cal pro comp MHCP Electric res bas for mo ole and ation.	effectivo ocess oletion Cour and I c Heat sed o tor loa d requ	ve util n of the rse Or MSCF ting, V n app ad util	e cou utcor of va Veldir licatio izatio	n of Ele rse, stu nes arious I ng & Fu on, Cale on, Cale	ectrical D udents wi lighting s urnace pr culation o cal energ	rives, El Il be able /stem. ocess of Power y in	ectric e to:	Lev rev	vel of nain (I taxon K K	learni Based Bloom iomy) 22 22	ng on
CO Nos. C01 C02 C03	Determi Illustrate Illustrate Illustrate	owledge echanic DMES cessful ne of N e the f he drivement f e the ro applica the Ele	e on e cal pro comp MHCP Electric for mo ble and ation. ectro N	effectivo ocess oletion Cour and I c Heat sed o tor loa d requ Mecha	ve util n of the rse Or MSCF ting, V n app ad util	e cou utcor of va Veldir licatio izatio	n of Ele rse, stu nes arious I ng & Fu on, Cale on, Cale	ectrical D udents wi lighting s urnace pr culation c	rives, El Il be able /stem. ocess of Power y in	ectric e to:	Lev rev	vel of nain (I taxon K K	learni Based Bloom iomy) 22 22 22 22 22	ng on
Ir E OURSI Upor CO Nos. C01 C02 C03 C04 C05 CORREI	Determi Illustrate traction Explain Energy	owledge echanic DMES cessful ne of N e the of N e the drive e the ro applica the Ele Requir OF CO	e on e cal pro comp MHCP Electric for mo ble and ation. ectro N rement	effectivo ocess oletion Cour and I c Heat sed o tor loa d requ Mecha ts	ve util n of the rse Or MSCF ting, V n app ad util uireme anical	e cou utcor P of va Veldir licatio ent of Proco	n of Ele rse, stu mes arious I ng & Fu on, Cale on, Cale	ectrical D udents wi lighting s urnace pr culation o cal energ d Calcula	rives, El Il be able ystem. ocess of Power y in tion of	ectric	Lev om rev	vel of nain (I rised taxon K K K	learni Based Bloom iomy) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ng on i's
Ir E OURSI Upor CO Nos. C01 C02 C03 C04 C05 COS CORREI COs	mpart kno lectro Me E OUTCO the succo Determi Illustrate Select t Require Illustrate traction Explain Energy	owledge echanic DMES cessful ne of N e the E he drive e the ro applica the Ele Requir DF CO PO2	e on e cal pro comp MHCP Electric res bas for mo ole and ation. ectro M rement PO3	effectivo ocess oletion Cour and I c Heat sed o tor loa d requ Mecha ts	ve util n of the rse Or MSCF ting, V n app ad util uireme anical	e cou utcor P of va Veldir licatio ent of Proco	n of Ele rse, stu mes arious I ng & Fu on, Cale on, Cale	ectrical D udents wi lighting s urnace pr culation o cal energ	rives, El Il be able ystem. ocess of Power y in tion of	ectric e to: d		vel of nain (I rised taxon K K K K	learni Based Bloom iomy) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ng on i's
CO Nos. C01 C02 C03 C04 C05 CO5 CORREI COs COs COs COs COs	Determi Illustrate traction Explain Energy	owledge echanic DMES cessful ne of N e the of N e the drive ment f e the ro applica the Ele Requir OF CO M	e on e cal pro comp MHCP Electric for mo ble and ation. ectro N rement	effectivo ocess oletion Cour and I c Heat sed o tor loa d requ Mecha ts	ve util n of the rse Or MSCF ting, V n app ad util uireme anical	e cou utcor P of va Veldir licatio ent of Proco	n of Ele rse, stu mes arious I ng & Fu on, Cale on, Cale	ectrical D udents wi lighting s urnace pr culation o cal energ d Calcula	rives, El Il be able ystem. ocess of Power y in tion of	ectric		vel of hain (I taxon K K K K D12 P	learni Based Bloom iomy) 22 22 22 22 22 22 22 22 22 22 22 22 22	ng on i's
Ir E COURSI Upor CO Nos. C01 C02 C03 C04 C05 C04 C05 CORREI COs COS CO1 COS	mpart kno lectro Me E OUTCO n the succo n	owledge echanic DMES cessful ne of N e the of N e the drive e the ro applica the Ele Requir OF CO M M M	e on e cal pro comp //HCP lectric /es bas for mo ole and ation. ectro N rement PO3 L	effectivo ocess oletion Cour and I c Heat sed o tor loa d requ Mecha ts	ve util n of the rse Or MSCF ting, V n app ad util uireme anical	e cou utcor P of va Veldir licatio ent of Proco	n of Ele rse, stu mes arious I ng & Fu on, Cale on, Cale	ectrical D udents wi lighting s urnace pr culation o cal energ d Calcula	rives, El Il be able ystem. ocess of Power y in tion of	ectric		vel of hain (I taxon K K K K D12 F A A	learni Based Bloom iomy) 22 22 22 22 22 22 22 22 22 22 22 22 22	ng on i's
CO Nos. C01 C02 C03 C04 C05 CO5 CORREI COs COs COs COs COs	Determi Illustrate Select t Require Illustrate traction Explain Energy	owledge echanic DMES cessful ne of N e the of N e the drive ment f e the ro applica the Ele Requir OF CO M	e on e cal pro comp MHCP Electric res bas for mo ole and ation. ectro M rement PO3	effectivo ocess oletion Cour and I c Heat sed o tor loa d requ Mecha ts	ve util n of the rse Or MSCF ting, V n app ad util uireme anical	e cou utcor P of va Veldir licatio ent of Proco	n of Ele rse, stu mes arious I ng & Fu on, Cale on, Cale	ectrical D udents wi lighting s urnace pr culation o cal energ d Calcula	rives, El Il be able ystem. ocess of Power y in tion of	ectric e to: d		Vel of main (I rised taxon K K K K D12 P A A	learni Based Bloom iomy) 22 22 22 22 22 22 22 22 22 22 22 22 22	ng on i's

COURSE O	ONTENT:	
UNIT I	ILLUMINATION	9
sources -	of light – Determination of MHCP and MSCP – Polar curve Rousseau's construction – Lighting schemes and calculation ng – Electric lamps – Gaseous discharge – High pressure and	ns - Factory lighting -
UNIT II	ELECTRIC HEATING AND WELDING	9
oven and e	Inductance and Arc furnaces – Construction and fields of a ficiency - High frequency - Dielectric heating – Characteristics – butt welding – spot welding.	
UNIT III	ELECTRIC DRIVES AND CONTROL	9
Running ch	 – Individual drive – selection of motors – starting and reacteristics - Mechanical features of electric motors – Drive - Choice of drives – power requirement calculation – power f 	s for different industrial
UNIT IV	ELECTRIC TRACTION	9
circuited, sl	stem – Speed time characteristics – Series and parallel contro- nunt and bridge transitions – Tractive effort calculation – Elect ous – A.C traction and recent trend - Magnetic devitation	
UNIT V	ELECTROMECANICAL PROCESSES	9
equipments iron and Ni	 polarization factor – preparation work for Electro platin Calculation of energy requirements – Methods of charging cadmium batteries –Lead acid batteries ,Components an Capacity rating of batteries – Battery charges. 	and maintenance - Ni-
		TOTAL: 45 PERIODS
TEXT BOO	KS:	
1. Upp	al S.L, "Electric Power", Khanna Publishers, 1988	
	n Shaw Taylor, "Utilization of Electrical Energy", Oriented Lor <i>r</i> ised in SI Units), 1971.	gmans Limited
	i A. Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar, " A tex em Enggineering", Khanna Publishers, 2000.	t book on Power
	Starr, "Generation, Transmission and Utilization of Electric Pov	
т . А.І.		ver", ELBS, 1978.
	CE BOOKS:	ver", ELBS, 1978.
REFEREN		

COURSE CODE	:
1152EE133	

COURSE TITLE: ENERGY AUDITING AND MANAGEMENT

Т	Р	С
0	0	3

L

3

COURSE CATEGORY:

Program Elective

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Understand the concept of energy auditing and its importance
- Acquire knowledge on finance management
- Understand the importance of energy efficient electrical system

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's taxonomy)
CO1	Describe energy scenario nationwide and worldwide	K2
CO2	Outline the energy management and audit methods	K2
CO3	Summarize financial management and Energy performance contracts	K2
CO4	Explain energy related aspects of electrical system	K2
CO5	Illustrate studies related to operational aspects of compressed air system	K2

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н					L		L					Н	L
CO2	Н	Н	М			М			L		L	L	Н	L
CO3	Н	Н				М			L		L	L	H	L
CO4	Н	Н	М			М	L						H	L
CO5	Н	Η	М			М	L						H	L
COU	RSE C	ONTE	ENT:											
UNIT	I E	NERC	gy sc	ENAR	lo									9
enviro	onmen		ergy se	ecurity								eforms, Energy		
UNIT	II E	NERC	GY MA	NAGI	EMEN	T ANI	D AUE	DIT						9
												t (audit ching e		

-		
	ent, Maximizing system efficiencies, Optimizing the input energy substitution, Energy audit instruments	gy requirements, Fuel
Material balance of	and Energy Balance: Methods for preparing process flow, liagrams.	Material and energy
UNIT III	FINANCIAL MANAGEMENT	9
	nt-need, Appraisal and criteria, Financial analysis techniques Financing options, Energy performance contracts and role of E	
UNIT IV	ELECTRICAL SYSTEM	9
efficiency energy e	v tariff, Load management and maximum demand control, T& in induction motors, Factors affecting motor performance a fficient motors. Light source, Choice of lighting, Luminand conservation avenues	nd remedial solutions,
UNIT V	COMPRESSED AIR SYSTEM	9
	air compressors, Compressor efficiency, Efficient compressor sed air system components, Capacity assessment.	operation,
performa refrigerat	nd Refrigeration System: Vapour compression refrigeration nce, Capacity, performance and savings opportunities, ion system: Working principle, Saving potential, Fans, Blowe nce evaluation, Flow control strategies and energy conservation	Vapour absorption rs and pumps- Types,
		TOTAL: 45 PERIODS
TEXT BC	OKS:	
	obi, Y.P. and Jain, S., Handbook on Energy Audit and Environ eri Bookstore (2006).	ment Management,
2. Di	wan, P., Energy Conservation, Pentagon Press (2008).	
REFERE	NCE BOOKS:	

1. Younger, W., Handbook of Energy Audits, CRC Press (2008).

COURSE CODE:
1152EE134

COURSE TITLE: ELECTRICAL SAFETY AND QUALITY MANAGEMENT

Т	Р	С
0	0	3

L

3

COURSE CATEGORY:

Program Elective

PREAMBLE :

To study the basic concepts of electrical safety and regulations

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to make the students,

• To study the electrical safety rules, regulations and quality management by the power factor improvement.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain Indian electricity rules and acts and their significance	K2
CO2	Illustrate the need of electrical safety in different locations	К2
CO3	Outline the need of electrical safety during installation of equipment's	K2
CO4	Explain the necessity of electrical safety in Hazardous zones	К2
CO5	Describe the electrical safety in distributed systems	К2

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Μ	L			Μ		Μ			Γ	М	Н	
CO2	Н	Μ	L			М		L				L	Н	
CO3	Н	Μ	L			М					L	L	Н	
CO4	Н	М	L			М		L			L	L	Н	
CO5	Н	Μ	L			Μ						L	Н	

COURSE CONTENT:

UNIT I INDIAN ELECTRICITY RULES AND ACTS AND THEIR SIGNIFICANCE

9

Objective and scope – ground clearances and section clearances – standards on electrical safety - safe limits of current, voltage – earthing of system neutral – Rules regarding first aid and fire fighting facility.

UNIT II	ELECTRICAL SAFETY IN RESIDENTIAL, COMMERCIAL AND AGRICULTURAL INSTALLATIONS	9
firing sho	nd fitting – Domestic appliances – water tap giving shock – sho ock – multi-storied building – Temporary installations – Agricult Don'ts for safety in the use of domestic electrical appliances.	
UNIT III	SAFETY DURING INSTALLATION, TESTING AND COMMISSIONING, OPERATION AND MAINTENANCE	9
- field q	ary preparations – safe sequence – risk of plant and equipment uality and safety - personal protective equipment – safety cle ons – safeguards for operators – safety	
UNIT IV	ELECTRICAL SAFETY IN HAZARDOUS AREAS	9
requirem Classifica	us zones – class 0,1 and 2 – spark, flashovers and corona di ents – Specifications of electrical plants, equipments for ation of equipment enclosure for various hazardous gases and	hazardous locations -
or equipr	nent/enclosure for hazardous locations.	
of equipr	ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM	9
UNIT V Total qua power fa		Disadvantages of low
UNIT V Total qua power fa	ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM ality control and management – Importance of high load factor – ctor – Causes of low P.F. – power factor improvement – equipm	Disadvantages of low
UNIT V Total qua power fa	ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM ality control and management – Importance of high load factor – ctor – Causes of low P.F. – power factor improvement – equipm rovement	Disadvantages of low ents – Importance of
UNIT V Total qua power fa P.F. impl TEXT BC 1. R	ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM ality control and management – Importance of high load factor – ctor – Causes of low P.F. – power factor improvement – equipm rovement	Disadvantages of low ents – Importance of TOTAL: 45 PERIODS
UNIT V Total qua power fa P.F. impr TEXT BO 1. R N 2. P	ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM ality control and management – Importance of high load factor – ctor – Causes of low P.F. – power factor improvement – equipm rovement covernent	Disadvantages of low ents – Importance of TOTAL: 45 PERIODS
UNIT V Total qua power fa P.F. impi TEXT BC 1. R N 2. P P	ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM ality control and management – Importance of high load factor – ctor – Causes of low P.F. – power factor improvement – equipm rovement OOKS: ao, S. and Saluja, H.L., "Electrical Safety, Fire Safety Engineerin lanagement", Khanna Publishers, 1988. radeep Chaturvedi, "Energy Management Policy, Planning and I	Disadvantages of low ents – Importance of TOTAL: 45 PERIODS
UNIT V Total qua power fa P.F. impi TEXT BC 1. R N 2. P P REFERE	ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM ality control and management – Importance of high load factor – ctor – Causes of low P.F. – power factor improvement – equipm rovement OOKS: ao, S. and Saluja, H.L., "Electrical Safety, Fire Safety Engineerin lanagement", Khanna Publishers, 1988. radeep Chaturvedi, "Energy Management Policy, Planning and I ublishing Company, 1997	Disadvantages of low ents – Importance of TOTAL: 45 PERIODS ng and Safety Utilization", Concept
UNIT V Total qua power fa P.F. impo TEXT BC 1. R W 2. P P REFERE 1. N 2. G	ELECTRICAL SAFETY IN DISTRIBUTION SYSTEM ality control and management – Importance of high load factor – ctor – Causes of low P.F. – power factor improvement – equipm rovement OOKS: ao, S. and Saluja, H.L., "Electrical Safety, Fire Safety Engineerin lanagement", Khanna Publishers, 1988. radeep Chaturvedi, "Energy Management Policy, Planning and I ublishing Company, 1997 SNCE BOOKS:	Disadvantages of low ents – Importance of TOTAL: 45 PERIODS ng and Safety Utilization", Concept a McGraw Hill, 1998. Sons, 2003.

COURSE CODE:
1152EE135

COURSE TITLE: RENEWABLE ENERGY SOURCES

Т	Ρ	С
0	0	3

L

3

COURSE CATEGORY:

Program Elective

PREAMBLE :

This course focuses on the new renewable energy based electric energy generation technologies and their integration into the power grid. The principals of new energy based distributed generation technologies: solar, wind, and fuel cells.

PREREQUISITE COURSES:

Basic Electrical Engineering

RELATED COURSES:

Project work.

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Introduce about the renewable energy sources like wind, solar and wave energy.
- Impart knowledge about the environmental friendly energy production and consumption.
- Explain about energy-efficient systems and products for various applications.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain about Renewable Energy resources and importance.	К2
CO2	Outline the process of photovoltaic power generation.	K2
CO3	Outline the process of power generation using wind energy sources.	К2
CO4	Describe the biomass and biogas production techniques.	K2
CO5	Explain the fundamentals and applications of Geothermal energy, tidal energy, MHD and fuel cells.	K2

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М	М								М	М	Н	
CO2	Н	М	М								М	М	Н	L
CO3	Н	М	М								L	L	Н	L
CO4	Н	М	М									L	Н	L
CO5	Н	М	М									L	Н	L

		COURSE CO
9	INTRODUCTION	UNIT I
n-environmental aspects	use-reserves of energy resources-energy cycle of the earth zation-renewable energy resources and their importance.	
9	SOLAR ENERGY	UNIT II
energy conversion, solid	ts, solar thermal systems and solar ponds, solar thermal ce at transport system, thermal storage systems, photovoltaic e les, semi- conductors, solar cell, batteries, satellite solar pow	heliostats, hea
	WIND ENERGY	UNIT III
	wind power, wind turbine operation, site characteristics, hori evelopments, small and large machines, magnus effect, de ge systems.	•
9	BIOMASS AND BIOGAS	UNIT IV
es and agro processing relopment, combustion	d systems, biomass production, energy plantation, short ro hass resource agro forestry wastes, municipal solid wastes sidues, environmental factors and biomass energy deve asification and liquefaction, modeling, appliances and h: biogas, fermentation and wet processes, chemicals	system, bioma industrial resi pyrolysis, ga
s from biomass and		biotechnology.
	OTHER RENEWABLE ENERGY SOURCES	biotechnology. UNIT V
rgy, types, systems and gy - types, systems and ypes and applications tions	/.	biotechnology. UNIT V Geothermal er applications. applications.
rgy, types, systems and gy - types, systems and ypes and applications	OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal ener Wave energy - types, systems and applications. Tidal energ Magneto Hydrodynamic system (MHD). Fuel cells – ty nnologies. Micro-hydel systems. Hybrid systems and applicat	biotechnology. UNIT V Geothermal er applications. applications. hydrogen tech
rgy, types, systems and gy - types, systems and ypes and applications tions	OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal ener Wave energy - types, systems and applications. Tidal energ Magneto Hydrodynamic system (MHD). Fuel cells – ty nnologies. Micro-hydel systems. Hybrid systems and applicat	biotechnology. UNIT V Geothermal er applications. applications. hydrogen tech
rgy, types, systems and gy - types, systems and ypes and applications tions TOTAL: 45 PERIODS	OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal ener Wave energy - types, systems and applications. Tidal energ Magneto Hydrodynamic system (MHD). Fuel cells – ty nnologies. Micro-hydel systems. Hybrid systems and applicat	biotechnology. UNIT V Geothermal er applications. hydrogen tech TEXT BOOKS
rgy, types, systems and gy - types, systems and ypes and applications tions TOTAL: 45 PERIODS	OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal ener Wave energy - types, systems and applications. Tidal energ Magneto Hydrodynamic system (MHD). Fuel cells – ty nnologies. Micro-hydel systems. Hybrid systems and applicat S: D, "Non Conventional Sources Of Energy", Khanna Publishe	biotechnology. UNIT V Geothermal er applications. hydrogen tech TEXT BOOKS
rgy, types, systems and gy - types, systems and ypes and applications tions TOTAL: 45 PERIODS ers, 2006.	OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal ener Wave energy - types, systems and applications. Tidal energ Magneto Hydrodynamic system (MHD). Fuel cells – ty nnologies. Micro-hydel systems. Hybrid systems and applicat S: D, "Non Conventional Sources Of Energy", Khanna Publishe	biotechnology. UNIT V Geothermal er applications. hydrogen tech TEXT BOOKS 1. Rai G I REFERENCE 1. Kothari
rgy, types, systems and gy - types, systems and ypes and applications tions TOTAL: 45 PERIODS ers, 2006.	OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal ener Wave energy - types, systems and applications. Tidal energy Magneto Hydrodynamic system (MHD). Fuel cells – typennologies. Micro-hydel systems. Hybrid systems and applicat S: D, "Non Conventional Sources Of Energy", Khanna Publishe BOOKS: ri P, K C Singal and Rakesh Ranjan, "Renewable Energy"	biotechnology. UNIT V Geothermal er applications. hydrogen tech TEXT BOOKS 1. Rai G I REFERENCE 1. Kothari Techno 2. Sukhat
rgy, types, systems and gy - types, systems and ypes and applications tions TOTAL: 45 PERIODS ers, 2006. Sources and Emerging Thermal Collection and	 OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal energy wave energy - types, systems and applications. Tidal energy Magneto Hydrodynamic system (MHD). Fuel cells – typenologies. Micro-hydel systems. Hybrid systems and applications. S: D, "Non Conventional Sources Of Energy", Khanna Publishe BOOKS: ri P, K C Singal and Rakesh Ranjan, "Renewable Energy aloogies", PHI Pvt. Ltd., New Delhi, 2008. atme S P and Nayak J K, "Solar Energy - Principles of T 	biotechnology. UNIT V Geothermal er applications. hydrogen tech TEXT BOOKS 1. Rai G I REFERENCE 1. Kothari Technol 2. Sukhat Storago 3. Frank
rgy, types, systems and gy - types, systems and ypes and applications tions TOTAL: 45 PERIODS ers, 2006. Sources and Emerging Thermal Collection and	 OTHER RENEWABLE ENERGY SOURCES energy, types, systems and application, Ocean thermal energy wave energy - types, systems and applications. Tidal energy Magneto Hydrodynamic system (MHD). Fuel cells – typenologies. Micro-hydel systems. Hybrid systems and applicat S: D, "Non Conventional Sources Of Energy", Khanna Publishe BOOKS: ri P, K C Singal and Rakesh Ranjan, "Renewable Energy applications", PHI Pvt. Ltd., New Delhi, 2008. time S P and Nayak J K, "Solar Energy - Principles of Tige", Tata McGraw Hill, 2008. Kreith and Yogi Goswami D, "Handbook of Energy Efficience. 	biotechnology. UNIT V Geothermal er applications. hydrogen tech TEXT BOOKS 1. Rai G I REFERENCE 1. Kothari Techno 2. Sukhat Storagu 3. Frank Energy

COURSE CODE:
1152EE136

COURSE TITLE: SOLAR ELECTRIC SYSTEMS

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Program Elective

PREAMBLE :

This course helps to understand Solar Cells and Its Technologies, Photovoltaic Principles Fabrication Technology

PREREQUISITE COURSES:

Basic Electrical Engineering

RELATED COURSES:

Project work.

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Introduce about the renewable energy sources like wind, solar and wave energy.
- Impart knowledge about the environmental friendly energy production and consumption.

CO Nos		Knowledge LevelCourse Outcomes(Based on revisedBloom's Taxonomy)												
CO1	E	Explain	abou	t solar	energ	gy and	l its te	chnolc	gies			K2		
CO2	2 (Outline	the pl	notovc	oltaic p	princip	les					K2	2	
CO3	3 E	Explain	the s	olar ce	ell fabi	icatio	n tech	nology	/			K2)	
CO	4	Predict	the pe	erform	ance	of sola	ar arra	y syst	em			K2)	
COS	`	Summarize the applications of solar photovoltaic K2												
CORR	ELAT		F CO	s WIT	H PO	s and	PSO	s						
COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
CO1	Н	Μ	L								L	Μ	Н	
CO2	Н	Μ	L								L	Μ	Н	L
CO3	Н	Μ	L								L	Μ	Н	L
CO4	Н	Μ	L								М	Μ	Н	L
CO5	Н	L	L								L	Μ	Н	L
OURS	E CC	DNTEN	T:											
JNIT I SOLAR CELLS AND ITS TECHNOLOGIES														

high efficiency solar cells, quantum dots, multi junction solar cells.

Solar cell technologies: Material selection, solar cell fabrication, amore crystalline silicon solar cells, thin film solar cells, organic solar cells, fin generation solar cells, advantages, drawbacks, latest developments; con Testing, standardization and evaluation of solar cells.	st-, second- and third-
UNIT II PHOTOVOLTAIC PRINCIPLES	9
Solar Cell Physics: p-n junction: homo and heterojunctions, Metal-semic Photovoltaic Effect, Equivalent Circuit of the Solar Cell, Analysis o illumination characteristics; Figure of merits of solar cell; Efficiency limits with band-gap and temperature; Efficiency measurements; High efficiency cells.	f PV Cells: Dark and ; Variation of efficiency
UNIT III SOLAR CELL FABRICATION TECHNOLOGY	9
Preparation of metallurgical, electronic and solar grade Silicon; Produ Silicon: Czokralski (CZ) and Float Zone (FZ) method: Procedure of ma and etching; Design of a complete silicon, GaAs, InP solar cell; High effi junction solar cell; a-Si-H based solar cells; Quantum well solar cell, Therm	sking, photolithography ciency III-V, II-VI multi-
UNIT IV SOLAR PHOTOVOLTAIC SYSTEM DESIGN	9
Solar cell array system analysis and performance prediction; Shadow an cell array design concepts; PV system design; Design process and optir design; Storage autonomy; Voltage regulation; Maximum tracking; Use design; Quick sizing method; Array protection and trouble shooting.	nization; Detailed array
UNIT V SPV APPLICATIONS	9
Centralized and decentralized SPV systems; Stand alone, hybrid and, g System installation, operation and maintenances; Field experience; PV economics of SPV systems. The Recent developments in Solar cells, Role Solar cell. Solar thermal electric system. Lighting, refrigeration, telecomma griculture, fencing, water purification, navigation, defence, offshore, etc.	/ market analysis and e of nano-technology in
	TOTAL: 45 PERIODS
TEXT BOOKS:	
 Renewable Energy Engineering and Technology – A Knowledge C Kishore ,TERI Press, 2008. CS Solanki: Solar Photovotaics – Fundamentals, Technologies and Learning, Kindle Edition - Jul 21, 2011 	
REFERENCE BOOKS:	
 SM Sze, Kwok K Ng: Physics of semiconductor devices, 3rd Edition 2007. MA Green: Solar Calls, Operating Principles, Technology, and Computer Solar Calls, Operating Principles, Technology, and Computer Solar Calls, Co	-
 MA Green: Solar Cells Operating Principles, Technology, and Prentice-Hall,1981 	System Applications,
3. MA Green: High Efficiency Silicon Solar Cells, Trans Tech Publicat	ions.
 SJ Fonash: Solar Cell Device Physics, Academic Press, 1982. Handbook of photovoltaic science and engineering, ed. Antor Hogodus, John Wiley and Sons 	io Luque and Steven
Hegedus , John Wiley and Sons. 6. Anna Mani, S Rangarajan: Handbook of Solar Radiation Data Publishers, 1980.	for India, 1980 Allied
ONLINE RESOURCES: https://nptel.ac.in/courses/113104084	

COURSE TITLE: WIND ENERGY CONVERSION SYSTEMS

L	Т	Р	С
3	0	0	3

COURSE CATEGORY: Program Elective

PREAMBLE :

Wind energy is the fast-growing renewable source for electricity generation. This course presents a broad overview of wind energy technology.

PREREQUISITE COURSES:

Basic Electrical Engineering

RELATED COURSES:

Renewable Energy sources, Electrical Machine Design

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Know about Power extraction from wind energy
- Understand the components and design of wind tower
- Understand working principle of induction generator, synchronous generator

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain the fundamentals of wind energy conversion and measurements.	K2
CO2	Summarize the types of wind turbines and aerodynamics.	K2
CO3	Explain the basic components of wind turbine and its construction.	K2
CO4	Illustrate the power management and grid monitoring unit.	K2
CO5	Explain the Operation & Maintenance for product lifecycle.	K2

CORRELATION OF COS WITH POS AND PSOS COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 Н Н Н L L L CO2 Н Н Н L L L CO3 Н Η Н L L L CO4 Н Н Н L L L CO5 Н Н L Н L L

UNIT I	WIND ENERGY FUNDAMENTALS AND
	MEASUREMENTS

Wind energy basics - Wind speed and scales - Terrain-Roughness-Wind mechanics - Power content – Class of wind turbine- Atmospheric boundary layers-Turbulence. Instrumentation for wind measurements - Wind data analysis - tabulation. Wind resource estimation - Betz's limit-Turbulence analysis.

UNIT II WIND TURBINE AREODYNAMICS AND TYPES

Airfoil terminology - Blade element theory - Blade design - Rotor performance and dynamics-Balancing technique (Rotor &Blade)-Types of loads - Source of loads-Vertical axis type -Horizontal axis - Constant speed Constant frequency - Variable speed variable frequency - Up wind-Down wind - Stall control-Pitch control - Gear coupled generator type - Direct generator drive/PMG/Rotor excited sync generator.

UNIT III GEAR COUPLED GENERATOR WIND TURBINE COMPONENTS AND THEIR CONSTRUCTION

Electronics sensors /Encode /Resolvers - Wind measurement: anemometer & wind vane - Grid synchronisation system - Soft starter - Switchgear [ACB/VCB]-Transformer - Cables and assembly - Compensation panel - Programmable logic control – UPS - Yaw & pitch system: AC drives - Safety chain circuits - Generator rotor resistor controller(Flexi slip) - Differential protection relay for generator - Battery/Super capacitor charger & Batteries/Super capacitor for pitch system-Transient Suppressor/Lightning arrestors - Oscillation & Vibration sensing.

UNIT IV DIRECT ROTOR COUPLED GENERATOR (MULTIPOLE)[VARIABLE SPEED –VARIABLE FREQUENCY

Excited rotor synch. Generator/PMG generator - Control rectifier-Capacitor banks - Step up/Boost converter (DC-DC Step Up) - Grid tied inverter - Power management - Grid monitoring unit (Voltage and current) - Transformer - Safety chain circuits.

UNIT V MODERN WIND TURBINE CONTROL & MONITORING 9 SYSTEM

Details of pitch system &Control algorithms-Protections used & Safety consideration in wind turbine-Wind turbine monitoring with error codes - SCADA & Databases: remote monitoring and generation reports - Operation & Maintenance for product lifecycle - Balancing technique (Rotor & Blade) -FACTS control & LVRT & New trends for new grid codes.

TOTAL: 45 PERIODS

9

9

9

9

TEXT BOOKS:

- 1. Renewable Energy Engineering and Technology A Knowledge Compendium, ed.VVN Kishore, TERI Press, 2008.
- 2. Martin OL Hansen: Aerodynamics of Wind Turbines, 2nd ed. Earthscan, London
- 3. Anna Mani: Wind Energy Data for India, Allied Publishers, 1990.
- 4. C-Wet: Wind Energy Resources Survey in India Vol. VII
- 5. S.Rangrajan: Wind Energy Resources Survey in India V, Allied Publishers, Mumbai 1998.

- 6. Sathyajith Mathew: Wind Energy: fundamentals, resource analysis and economics
- 7. Prepared by WISE: Wind Power in India, 5000MW BY 2015
- 8. B.H.Khan: Non Conventional Energy Sources, Tata McGraw-Hill Education, 2006.

REFERENCE BOOKS:

- 1. Johnson, G.L., Wind Energy Systems, Prentice Hall, 1985.Martin OL Hansen: Aerodynamics of Wind Turbines, 2nd ed. Earthscan, London
- 2. Paul Gipe: "Wind energy Basics: A guide to small and micro wind" ,Chelsea Green Publishing, 2008.
- 3. L. L. Freris, Wind Energy Conversion systems, Prentice Hall, UK, 1990.
- 4. Godfrey Boyle., Renewable Energy: Power for a Sustainable Future, Second Edition, Oxford University Press, 2004.

COURSE CODE: 1152EE146

COURSE TITLE: GENERATION PLANNING

L	Т	Р	С
3	0	0	3

COURSE CATEGORY:

Program Elective

PREAMBLE :

It is aimed to provide the basics of power system planning, particularly on generation capacity expansion planning and provide the information about the impact of environmental pollution, reliability on integration of demand and supply side management activities in addition renewable energy sources penetration.

PREREQUISITE COURSES:

Power System Analysis

RELATED COURSES: Nil

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand the load forecasting techniques, power generation reliability indices
- Know the basic concepts of generation expansion planning and WASP-IV module
- Compare the demand side and supply side management in GEP studies and the effect of penetration of renewable energy resources in power system

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Interpret the load forecasting techniques	K2
CO2	Explain types of reliability indices for power generation system	K2
CO3	Illustrate the basic concept of GEP problem	K2
CO4	Solve the effect of DSM and SSM activities in GEP	K3
CO5	Identify the impact of renewable energy on environmental pollution and reliability of power system	КЗ

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	М		L								L	Н	L
CO2	Н	Н		М									Н	L
CO3	Н	L		L	М						L	L	Н	L
CO4	Н	L	Μ	М	М						L		Н	L
CO5	Н	L	Μ	М	М		М				L	L	Н	L

UNIT I	LOAD FORECASTING	9
forecasting	tem planning- Objective- Stages in planning and design - need for acc g - factors affecting forecasting- approaches- methodology- Short-run and s techniques-Peak demand and Energy forecasting	
UNIT II	POWER GENERATION RELIABILITY	9
load proba	erating Capacity Reliability Evaluation- Outage definitions-reliability indicability (LOLP) - expected energy not served (EENS) - capacity outage probability problems.	
UNIT III	GENERATION COST OPTIMIZATION	9
costs - ca	Formulation of least cost optimization problem- capital, operation and maindidate units - different types- Wien Automatic System Planning- IV (ASP-IV modules-simple simulation studies	
UNIT IV	DEMAND SIDE MANAGEMENT (DSM) AND SUPPLY SIDE MANAGEMENT (SSM)	9
Load man implement SSM –Intre	oduction- driving factors- benefits- DSM measures-Energy reduction prog agement programmes - Load growth and conservation programmes - cha ing DSM programmes oduction-options and opportunities - constraints and challenges - integration n generation planning	allenges of
Load man implement SSM –Intre	agement programmes - Load growth and conservation programmes - chaing DSM programmes oduction-options and opportunities - constraints and challenges - integration	allenges of
Load man implement SSM –Intra and SSM i UNIT V Benefits of	agement programmes - Load growth and conservation programmes - cha ing DSM programmes oduction-options and opportunities - constraints and challenges - integration n generation planning	allenges of on of DSM
Load man implement SSM –Intra and SSM i UNIT V Benefits of	agement programmes - Load growth and conservation programmes - chaing DSM programmes oduction-options and opportunities - constraints and challenges - integration n generation planning GENERATION PLANNING WITH RENEWABLE ENERGY f renewable energy sources- Modelling of wind and solar plants in planning	allenges of on of DSM g ng studies-
Load man implement SSM –Intra and SSM i UNIT V Benefits of	agement programmes - Load growth and conservation programmes - chaing DSM programmes oduction-options and opportunities - constraints and challenges - integration n generation planning GENERATION PLANNING WITH RENEWABLE ENERGY f renewable energy sources- Modelling of wind and solar plants in plannin ad modelling- environmental analysis and reliability analysis. TOTAL: 45	allenges of on of DSM g ng studies-
Load man implement SSM –Intra and SSM i UNIT V Benefits of negative lo	agement programmes - Load growth and conservation programmes - chaing DSM programmes oduction-options and opportunities - constraints and challenges - integration n generation planning GENERATION PLANNING WITH RENEWABLE ENERGY f renewable energy sources- Modelling of wind and solar plants in plannin ad modelling- environmental analysis and reliability analysis. TOTAL: 45	allenges of on of DSM g ng studies-
Load man implement SSM –Intra and SSM i UNIT V Benefits of negative lo TEXTBOO 1. Sulliva	agement programmes - Load growth and conservation programmes - chaing DSM programmes oduction-options and opportunities - constraints and challenges - integration n generation planning GENERATION PLANNING WITH RENEWABLE ENERGY f renewable energy sources- Modelling of wind and solar plants in plannin ad modelling- environmental analysis and reliability analysis. TOTAL: 45 KS:	allenges of on of DSM 9 ng studies- PERIODS
Load man implement SSM –Intra and SSM i UNIT V Benefits of negative lo TEXTBOO 1. Sulliva 2. James REFEREN	agement programmes - Load growth and conservation programmes - chaing DSM programmes oduction-options and opportunities - constraints and challenges - integration n generation planning GENERATION PLANNING WITH RENEWABLE ENERGY f renewable energy sources- Modelling of wind and solar plants in plannin bad modelling- environmental analysis and reliability analysis. TOTAL: 45 KS: an, R. L. <i>Power system planning</i> McGraw-Hill New York, 1977	allenges of on of DSM g ng studies- PERIODS

COURSE CODE: 1152EE143

COURSE TITLE: SOLAR PHOTOVOLTAIC SYSTEMS

L	Т	Ρ	С
2	0	2	3

COURSE CATEGORY: Program Elective

PREAMBLE: This course emphasizes the growing demand of renewable energy sources especially harnessing power from sun. Solar Photo Voltaic technology and systems comprise of the fundamentals, design, optimization and application of solar photovoltaic systems for power generation on small and large scale electrification.

PRE-REQUISITES: Basic Electrical Engineering

COURSE EDUCATIONAL OBJECTIVES:

The objectives of the course are to,

- Familiar with basics of solar PV
- Familiar with various PV performance measure terminologies.
- Understand about manufacturing of PV cells & sizing aspects of PV systems.
- Understand about PV system components and apply them in installation practices & associated trouble shootings.
- Understand about PV system applications and associated safety measures.

COURSE OUTCOMES:

Upon the completion of the course students will be able to

CO Nos.	Course Outcomes	Knowledge Level (Based on revised Bloom's Taxonomy)
CO1	Explain the principle of direct solar energy conversion to power using PV	K2
CO2	Contrast the performance measures of PV	K2
CO3	Infer on solar cells & design aspects of solar PV	K2
CO4	Identify PV components and installation practices	K2
CO5	Develop ideas for working on solar PV systems and associated safety practices	K2

CORRELATION OF Cos WITH Pos AND PSOs

Cos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	н	L		104	1.00	100	н	1.00		1010		1012		L
CO2	Н	М					L					Н		
CO3	Н	М			Н		L					Н		Н
CO4	Н	Н					L							Н
CO5	Н	Н	Н		Н	Н	Н		Н		Н		М	Н

	ITS	
UNIT I	SOLAR CELL FUNDAMENTALS	e
	energy conversion, Photovoltaic effect, Semiconductor prop ons. Solar cell structure, parameters of solar cell.	erties, energy
UNIT II	PV MODULE PERFORMANCE	e
	s & arrays, I-V &P-V characteristics, maximum power point, fill factor, role of bypass & blocking diode, factors a	
UNIT III	MANUFACTURING OF PV CELLS & DESIGN OF PV SYSTEMS	6
silicon cells, amor	cells – Production process of single crystalline silicon cells, mu phous silicon, cadmium telluride, copper indium gallium dise systems, cost estimation, various aspects, system simulation to	lenide cells.
UNIT IV	SOLAR PV SYSTEMS INSTALLATIONS & TROUBLE SHOOTING	e
system, grid Intera PV system, conce batteries, charge co	entral Power Station System, Distributed PV System, Stand ctive PV System, small system for consumer applications, h ntrator solar photovoltaic. System components – PV arrays, ontrollers, net metering. PV array installation, operation, costs PV system components.	ybrid solar , inverters,
UNIT V	PV SYSTEM APPLICATIONS & SAFETY	6
Building-integrated devices for distribu industry& challenge space solar powe	photovoltaic units, grid connected central power stations uted power supply in remote and rural areas, Outlook for thes, Applications: solar home system, solar cars, Solar Chater satellites. Socio-economic and environmental merits of	, stand-alone ne Indian PV irger, aircraft,
Building-integrated devices for distribu industry& challenge space solar powe	photovoltaic units, grid connected central power stations uted power supply in remote and rural areas, Outlook for the es, Applications: solar home system, solar cars, Solar Cha er satellites. Socio-economic and environmental merits of installation of solar PV systems	, stand-alone ne Indian PV irger, aircraft,
devices for distribution industry& challenge space solar power	photovoltaic units, grid connected central power stations uted power supply in remote and rural areas, Outlook for the es, Applications: solar home system, solar cars, Solar Cha er satellites. Socio-economic and environmental merits of installation of solar PV systems	, stand-alone ne Indian PV Irger, aircraft, photovoltaic
Building-integrated devices for distribu- industry& challenge space solar powe systems safety in I TEXTBOOKS: 1. Chetan Singh So PHI Learning Pvt., 2. Jha A.R., " <i>Solar</i> 3. John R. Balfour,	photovoltaic units, grid connected central power stations uted power supply in remote and rural areas, Outlook for the es, Applications: solar home system, solar cars, Solar Cha er satellites. Socio-economic and environmental merits of nstallation of solar PV systems TOTAL planki., Solar Photovoltaic: "Fundamentals, Technologies and A	, stand-alone ne Indian PV arger, aircraft, photovoltaic 45 PERIODS
Building-integrated devices for distribu- industry& challenge space solar powe systems safety in I TEXTBOOKS: 1. Chetan Singh So PHI Learning Pvt., 2. Jha A.R., " <i>Solar</i> 3. John R. Balfour,	photovoltaic units, grid connected central power stations uted power supply in remote and rural areas, Outlook for the es, Applications: solar home system, solar cars, Solar Cha er satellites. Socio-economic and environmental merits of nstallation of solar PV systems TOTAL blanki., <i>Solar Photovoltaic: "Fundamentals, Technologies and A</i> Ltd., 2009. <i>Cell Technology and Applications"</i> , CRC Press,2010. Michael L. Shaw, Sharlave Jarosek., <i>"Introduction to Photovolt</i> Publishers, Burlington, 2011.	, stand-alone ne Indian PV arger, aircraft, photovoltaic 45 PERIODS

ONLINE RESOURCES:

1. https://nptel.ac.in/courses/113104084

LABORATOTY PRACTICES

1) To perform experiment to study I-V characteristics of SPV module.

2) To perform experiment to study series combination of SPV modules.

3) To perform experiment to study parallel combination of SPV modules.

4) To perform experiment to study effect of tilt angle on SPV module output.

5) To perform experiment to demonstrate the effect of shading on SPV module output.

6) To study the effect of shading on the output of solar panel.

8) To understand how to use various electrical measuring equipments.

WEB REFERENCES:

<u>https://www.nrel.gov</u> The National Renewable Energy Laboratory (NREL), located in Golden, Colorado, specializes in renewable energy and energy efficiency research and development. NREL is a government-owned, contractor-operated facility, and is funded through the United States Department of Energy.

<u>https://nise.res.in/</u> National Institute of Solar Energy, an autonomous institution of Ministry of New and Renewable (MNRE), is the apex National R&D institution in the field Solar Energy. The Government of India

http://www.seriius.org/ (SERIIUS—the Solar Energy Research Institute for India and the United States—is co-led by the Indian Institute of Science (IISc)—Bangalore, India, and the National Renewable Energy Laboratory (NREL), Golden, Colorado, USA.)

COURSE CODE:
1152EE201

COURSE TITLE: APPLIED SOFT COMPUTING

L	Т	Р	С
2	0	2	3

COURSE CATEGORY: Program Elective

PREAMBLE :

This course will cover fundamental concepts of Artificial Neural Networks (ANNs), Fuzzy logic (FL) and optimization techniques using Genetic Algorithm (GA), PSO, DE etc.

PREREQUISITE COURSES: Nil

COURSE EDUCATIONAL OBJECTIVES :

The objectives of the course are to,

- Understand the fuzzy logic operations, relations and inference systems
- Understand the architecture, learning methodologies of perceptron and back propagation algorithm
- Know basics of genetic and differential evolution algorithm
- Study different optimization techniques -PSO, Firefly, Artificial BEE algorithm etc
- Study soft computing techniques applications related to electrical engineering

COURSE OUTCOMES : Upon the successful completion of the course, students will be able to:

CO Nos.	Co	ourse (Dutcor	nes							(B	Knowledge Level (Based on revised Bloom's Taxonomy)				
CO1		escribe gic con		fuzzific	ation a	and de	fuzzific	ation i	n a fuz	zy	K2					
CO2		aborate nsideri			ł	〈 2										
CO3		Explain the concept and steps involved in genetic algorithm and differential evolution algorithm K2														
CO4		scuss t w to ap						0	hms a	nd		ł	〈 2			
CO5	ele	evelop ectrical chnique	engine						•	basic	K3					
CORR	ELATI	ON OF	COs	WITH I	POs A	ND PS	Os									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
C01	Н	М	М		L							L	М	М		
CO2	Н	М	М		L							L	М	М		
CO3	Н	М	М		L							L	М	М		
CO4	Н	М	М		L							L	М	М		
CO5	Н	М	М	М	Н				М			L	М	М		
			•											· · · · · · · · · · · · · · · · · · ·		

COURSE	CONTENT :	
UNITI	FUZZY LOGIC	7
	s- logic operations and relation, fuzzy decisions making, fuzzy inferengic controller.	nce systems, design
UNITII	ARTIFICIAL NEURAL NETWORKS	7
	euron-Supervised and unsupervised learning-single layer perceptron, and r gation neural network.	multi-layer perceptron,
UNITIII	7	
	algorithms: Introduction-genetic algorithm steps-selection, crosso	ver, and mutation-
UNITIV	SWARM INTELLIGENCE	9
	warm optimization(PSO)-Firefly algorithm(FA), Artificial BEE opti timization(CSO)-Bacterial foraging optimization(BFO)	mization(ABC) -Cat
UNITV	LIST OF EXPERIMENTS	15
LAB a) Ap b) Fu	lies of soft computing applications to electrical engineering problems plication of fuzzy logic for temperature control in refrigerator zzy logic controller for speed control of stepper motor	using MATLAB/SCI
	nulating logic gates with a neural network	
	plications of genetic algorithm for speed control of induction motor /arm intelligence for optimization problem in electrical engineering	
6) 50		OTAL: 45 PERIODS
TEXT BO		
2. Tir 3. Ja Co 4. K./	N.Sivanandam and S.N.Deepa, "Principles of Soft Computing", Wiley nothy Ross, "Fuzzy Logic with Engineering Applications", (McGrawH ng, J.S.R., Sun, C.T. and Mizutani, E., 'Neuro-fuzzy and Soft Comput omputational Approach to Learning and Machine Intelligence', Prentice A.D. Jo ng, 'Evolutionary Computation – A Unified Approach', PHI Lea	lill) ing: A e Hall, 2009.
	ICE BOOKS:	
2. S.F Alg 3. De Inc 4. Ge	Haykin, 'Neural Networks and Learning Machines', Prentice Hall, 200 Rajasekaran, G.A. VijayalakshmiPai,"Neural Networks, Fuzzy jorithms", PHI, New Delhi b, K., 'Optimization for Engineering Design Algorithms and Exampl lia. 2009. Porge J. Klir, Ute St. Clair, Bo Yuan, "Fuzzy Set Theory: Foundatior entice Hall, 1997.	logic & Genetic es', Prentice Hall of

COURSE CODE: 1152EE202

COURSE TITLE: SWITCH MODE POWER SUPPLY DESIGN AND DEVELOPMENT

L	Т	Р	С
4	0	4	6

COURSE CATEGORY: Program Elective

PREAMBLE :

The course is designed as lab dominated theory course to make the student acquire thorough knowledge in the field of power supply design for the given devices or equipments. Since power supply system is absolutely necessary for all equipments which produce constant voltage at the output irrespective of changes in supply voltage. This course is designed from understanding the fundamental of SMPS in designing an SMPS for the given equipments.

PREREQUISITE COURSES:

• Basic Electrical Engineering, Basic Electronics Engineering, Electronic Devices and Circuits, Power Electronics

COURSE EDUCATIONAL OBJECTIVES:

The objectives of this course are to,

- Analyse insight of SMPS and its various topologies
- Design concepts and fabrication of a modern power supply system for the given equipment.

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's taxonomy)
CO1	Explain the fundamental concept of SMPS	K2
CO2	Outline the working of rectifier, chopper, amplifier circuit, voltage and current sensors	K2
CO3	Explain the SMPS topologies	K2
CO4	Design SMPS for specific application	K4
CO5	Identify the power quality issues using power quality analyzer	K3

CORRELATION OF COS WITH POS AND PSOS

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	Н	L						L				М	
CO2	Н	Н	М						L		М	L	М	L
CO3	Н	Н	М						L		М	L	М	Н
CO4	Н	Н	Н	М	М				М		М	L	М	Н
CO5	Н	Н	М	L	М				L		М	L	М	Н
COURSE CONTENT:														
UNIT I INTRODUCTION 12														
Introduct	ion to	SMPS	S-type	s-evo	lution-	nee	dof	SMP	S- Line	ear Reg	gulator	vs Sl	MPS -	Block

diagra	m-advantages-Applications	
UNIT I	I COMPONENTS	12
voltage	er types and its operations-purpose of amplifier in SMPS-amplifier circle regulator and its types-comparator and its types- importance of co on-types-role of chopper in SMPS	
UNIT I	II SMPS CONVERTER TOPOLOGIES	12
Buck,	Boost, Buck-Boost, Push-Pull, Fly back, Resonant, forward Converter-	Operation.
	V DESIGN OF SMPS	12
	on of switching devices for SMPS-switching frequency-PWM te -duty cycles- comparator design- need of voltage and current sensors a	
UNIT	/ POWER QUALITY ASSESSMENT	12
voltage	quality analyzer-block diagram and its working-applications-measurem harmonics at source side of SMPS -UPS output side-measurement of analysis of power quality issues in load side for single phase and three	of input power
	TOTAL	: 60+60 PERIODS
TEXT E	SOOKS:	
1.	Maniktala, Sanjaya (2006), Switching Power Supplies A to Z, Newnes ISBN 0-7506-7970-0	/Elsevier,
REFE	RENCE BOOKS:	
1.	Keith Billings, Taylor Morey, Switch mode Power Supply Handbook Edition, McGraw-Hill Education, New York, 2012.	, Third
2.	Abraham I. Pressman, Keith Billingss, Taylor Morey-Switching Power third edition, New York: McGraw-Hill, 1999	Supply Design,
3.	ON Semiconductor (July 11, 2002). "SWITCHMODE Power Supplies- Manual and Design Guide" (PDF). Retrieved 2011-11-17.	-Reference
LIST	OF EXPERIMENTS	
1.	Identification, testing of components and its terminals used in SMPS	
2.	a. Selection of energy storage inductor, output filter capacitor.	
	b. Study the working of various high frequency switching devices	
3.	a. Selection of switches, snubber circuit design	
	b. Study of Magnetic circuits and Transformer	
4.	To Generate Pulse width modulation signal using different circuits	
5.	a. Design of feedback controller and amplifier circuit	
	b. Op-amp circuits for current and voltage sensing in converters.	
6.	a. Measurement of output voltage using voltage sensor	
	b. Study the working of tiny fly back step down transformer	

- 7. Design and testing of a voltage regulator circuit
- 8. Design and testing of simple DC chopper
- 9. Design of non-isolated DC-DC converters in different operating modes
- 10. Microcontrollers selection to use in SMPS circuits
- 11. Study of popular PWM Control IC's (SG 3525,TL 494,MC34060 etc.)
- 12. Study of popular PFC Control ICs MC34062 and UC 3854
- 13. Design of driver circuits
- 14. Design and development of SMPS and measure the input power factor and THD of input voltage and current using a power quality analyzer.
- 15. Troubleshooting of SMPS.

COURSE CODE: 1152EE301

COURSE TITLE: VOLTAGE STABILIZER FABRICATION

L	Т	Р	С
0	0	2	1

COURSE CATEGORY:

Program Elective / University Elective

PREAMBLE :

This course includes the development of skills in power supply unit which is essential for all house hold appliances. This course is designed from understanding the fundamental of voltage stabilizer to designing a voltage stabilizer for the given power rating.

PREREQUISITE COURSES:

• Basic Electrical Engineering, Basic Electronics Engineering

RELATED COURSES:

• Nil

COURSE EDUCATIONAL OBJECTIVES:

The objectives of this course are to,

- Identify the requirement of voltage stabilizer for domestic equipments.
- Procedure to design of transformer for a given power rating of voltage stabilizer
- Procedure for the design of relay driver circuit for voltage stabilizer
- Techniques for trouble shooting the voltage stabilizer for any problem

COURSE OUTCOMES :

Upon the successful completion of the course, students will be able to:

CO Nos.	Course Outcomes	Level of learning domain (Based on revised Bloom's taxonomy)
CO1	Explain the basic concepts of voltage stabilizer	K2, S1
CO2	Build a transformer for voltage stabilizer	K3, S2
CO3	Build of relay driver circuit	K3, S2
CO4	Demonstrate voltage stabilizer for specific application	K3, S3
CO5	Demonstrate troubleshooting of voltage stabilizer	K3, S3

CORRELATION OF COS WITH POS AND PSOS

COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Н	L										L	Н	L
CO2	Н	L	L						М	L			L	Н
CO3	Н	L	L						М	L			L	Н
CO4	Н	L	М						М	М	М	L	М	Н
CO5	Н	L	М	Н					М				Н	Н

COURSE CONTENT:

Design of voltage stabilizer

Introduction-Need of voltage stabilizer-Power rating calculation-Block diagram- complete circuit and its operation -Relay driver circuit design-Comparator design-Transformer design

LIST OF EXPERIMENTS

- 1. Identification of components and its terminals used in voltage stabilizer
- 2. Design and development of transformer for given power rating
- 3. Design and development of comparator circuit for voltage stabilizer
- 4. Design and development of relay driver circuit used in voltage stabilizer
- 5. Voltage measurement using voltage sensor
- 6. Design of amplifier circuit for voltage stabilizer
- 7. Demonstration and testing of voltage stabilizer for various input voltage.
- 8. Trouble shooting of voltage stabilizer

Total: 30 hrs

TEXT BOOK:

1. M. Lotia "Modern Voltage Stabilizer Servicing: Introduction, Basic Principle and Repairing", ISBN 10: 8176562831 / ISBN 13: 9788176562836, BPB Publications, 2006.

REFERENCE BOOK:

 Osama Butt "Automatic Voltage Stabilizer by Using Pulse Width Modulation", ISBN 10: 365989317X / ISBN 13: 9783659893179, Published by LAP Lambert Academic Publishing Jun 2016, 2016.